Metalation and Electrophilic Substitution of Amine Derivatives Adjacent to Nitrogen: α -Metallo Amine Synthetic Equivalents

PETER BEAK* and WILLIAM J. ZAJDEL

Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801

DAVID B. REITZ

Monsanto Agricultural Products Company, Research Division, St. Louis, Missouri 63167

Received June 16, 1983 (Revised Manuscript Received February 21, 1984)

Contents

Ι.	Introduction	471
II.	Activating Groups	471
	A. Amides ($Z = C(=O)R$)	473
	B. Thioamides $(Z = C(=S)R)$	479
	C. Imides $(Z = (RC(==O))_2)$	479
	D. Ureas (Z = $R_2NC(==0)$)	479
	E. Carbamates (Z = ROC(==0))	483
	F. Phosphoramides (Z = $P(==O)(NR_2)_2)$	484
	G. Nitrosoamines (Z = NO)	484
	H. Isocyanides (Z = ==C)	491
	I. Formamidines (Z = CH(NR))	497
	J. Imines ($Z = CR_2$)	501
	K. Isothiocyanates (Z = C—S)	506
	L. N-Sulfinylamines (Z = SO)	510
	M. Amine Oxides (Z = $-O^{-}$)	512
III.	Systems with Additional Activation	512
IV.	Comparison of α -Lithio Amine Synthetic Equivalents	514
٧.	Mechanism of Metalation	515
VI.	Summary	517
VII.	Addendum	519
III.	References	521

I. Introduction

The preparation and elaboration of amines is a matter of long-standing interest in organic synthesis. Most of the classical syntheses employ as the key step nucleophilic substitution either by nitrogen or by a nucleophile to a carbon adjacent to nitrogen. A sequence involving nucleophilic substitution by a nitrogen is shown in Scheme I for the transformation of 1 to 2, in which a masking or activating group Y often is needed in the first step. Methodology for achieving nucleophilic substitution adjacent to nitrogen is illustrated by the conversion of 1 to 3. Oxidative conversion of an amine to an imine, or more commonly, the formation of the imine from the condensation of 1 and an aldehyde or ketone, is followed by addition of a nucleophile to the α position in this approach. This sequence is effective with a wide variety of amines and nucleophiles and is probably the most widely used strategy for amine elaboration involving substitution at carbon.^{1,2} Radical substitutions, shown for the conSCHEME I

version of 1 to 4 in Scheme I has also been achieved at the carbon adjacent to nitrogen of amines or derivatives and the synthetic utility of this approach is at a promising stage of development.³

Classical syntheses of amines do not allow electrophilic substitution adjacent to nitrogen. The nonbonding electrons on nitrogen would be expected to interfere with direct substitution and the α -hydrogens of amines are not sufficiently acidic to be removed by strong bases except in systems which have additional activation. Thus the conversion of 1 to 5 either directly or via 6, as shown in Scheme I, has not been possible generally.

However, recent studies of a number of amine derivatives have shown that protons which are adjacent to a nitrogen bearing an electron-withdrawing group can be acidic. Thus α -metallo amine synthetic equivalents 6 can be prepared and conversion of an amine 1 to 5 in which the α -hydrogen of the amine is replaced by an electrophile, becomes possible. This approach provides a new general strategy for amine elaboration by charge affinity inversion or umpolung of the customary amine reactivity.⁴

II. Activating Groups

A general sequence for electrophilic substitution at the α -carbon of a secondary amine is illustrated in Scheme II. An activating group Z is added to the amine to afford a derivative 7. Subsequent removal of

Peter Beak received his B.A. degree from Harvard University in 1957 and his Ph.D. from Iowa State University in 1961. He joined the faculty at the University of Illinois in 1961, and is currently a Professor of Chemistry. His research interest include the investigation of new and novel reactions.

William T. Zajdel received his B.A. degree from Wabash College in 1976, with a year spent at Queen Elizabeth College, University of London. His Ph.D. degree, in 1982 at the University of Illinois, dealt with the synthetic utility and the mechanism of formation of α' -lithio amides. He is a member of the faculty of The University of Redlands, Redlands, CA. His research interests involve organometallic reactions.

David B. Reitz received his B.S. degree from Kent State University in 1972 and his Ph.D. from the University of Illinois in 1977. His graduate work involved the investigation of dipole-stabilized carbanions from thio esters. He has a continuing interest in organometallic chemistry and in synthetic methodology. Dr. Reitz was a research chemist at the Proctor and Gamble Company in Cincinnati, Ohio from 1977 to 1979. He then moved to the Monsanto Agricultural Products Company in St. Louis, MO as a member of the synthesis section and he has recently transferred to the process development section.

a proton adjacent to the nitrogen of 7 gives 8 which then is allowed to react with an electrophile to give the substituted derivative 9. Removal of Z from 9 provides the α electrophilically substituted amine 5. In this sequence the formation of 8, an α -metallo amine synthetic equivalent, by deprotonation of 7 is the novel step. The ability of Z to provide stabilization for removal of the α -proton of 7 is the key to this methodology.

The group Z can provide stabilization in the transition state leading to 8 by complexation with the metal of the base, by dipole stabilization, and/or by resonance delocalization. Association in a preequilibrium complex can deliver the base to the α -proton and enhance the later contributions. Examples of each type of stabilization are known. Carbanions corresponding to 8 formed from amides and formamidenes are considered to be associated and dipole stabilized while the derivatives from nitrosoamines are resonance stabilized (vide infra). In addition to promoting the acidity of the proton adjacent to nitrogen, the group Z, in order to be synthetically useful, must not bear kinetically acidic protons, must be stable toward strongly basic reagents, must not interfere with the electrophilic substitution, and must be conveniently added in the first step and removed in the last step of the sequence.

A number of groups which are useful in the sequence of Scheme II have been developed in recent years. In this report we will summarize the recent synthetic chemistry of these α -metallo amine synthetic equivalents. The review is organized on the basis of the type of functional groups and will not include much of the early work in this area which has been part of other summaries.^{5,6} Specifically, material covered in our 1978 report on dipole-stabilized carbanions will be included only as needed for background in the present more prescribed coverage. All of the material in the tables and many of the synthetic developments which make this metholology generally useful postdate the earlier review. The schemes have generally been simplified for clarity and the tables should be consulted for details. The focus of the present review is on species in which the α -carbon of the amine derivative is activated primarily by the substituted nitrogen. Some examples which are of particular synthetic value and have an additional activating functional group, however, will be noted. The metalations and substitutions of nitro compounds, which can provide α -electrophically substituted amines by subsequent reduction of the nitro group, will not be included.⁷

SCHEME III

A. Amides (Z = C(=0)R)

The observation that dipole-stabilized carbanions 10 can be formed from amides and undergo electrophilic substitution as shown in Scheme III led to investigations of a number of systems in which the activating function Z contains a carbonyl group.^{5,6,8} The conundrum which these studies face is the need for a carbonyl group which can be efficiently added to and cleaved from the amine while being resistant to nucleophilic addition by the alkyllithium base required to form the carbanionic intermediate 10.

Two amide systems have been reported which allow electrophilic substitution of methyl and primary positions of unactivated amines as shown in Scheme IV. The triphenylacetamide system 11 can be lithiated to provide the intermediate 12 which reacts with nonenolizable aldehydes and ketones to give hydroxy amides 13 in useful yields (Table I).⁹ However, at temperatures >0 °C transmetalation to an ortho position of one of the benzene rings followed by migration of the carbonyl group is observed. Hydrolysis of 13 is achievable with dissolving alkali metals/naphthalene or methyllithium to give the hydroxy amines 14 in moderate yields.

The diethylbutanamide system 15 can be lithiated to give 16 which reacts with aldehydes and ketones to give 17 in useful yields (Table I).¹⁰ The amido alcohols 17 rearrange on treatment with acid to amino esters 18 SCHEME V

which subsequently can be hydrolyzed to the corresponding amino alcohols 14 in good yields. By these methodologies dimethylamine, diethylamine, and the piperidines have been substituted as shown in Scheme IV and detailed in Table II.

Alkylation is also possible; for example, the organolithium reagent 16 can effect nucleophilic displacement on primary halides and 12 reacts with benzyl halides (Table I). Reaction of 16 ($R_1 = C_2H_5$, $R = CH_3$) with dodecyl bromide gives 19 ($R_1 = C_2H_5$, $R = CH_3$, $R_4 =$ (CH_2)₁₀CH₃) in 65% yield. When followed by strong acid hydrolysis this sequence provides *N*-(1-methyltridecyl)-*N*-ethylamine (20) in 79% yield. A similar alkylation of the 4-phenylpiperidinyl derivative provides 2-butyl-4-phenylpiperidine in 62% overall yield.¹¹

The regiochemistry of substitution by aldehydes on piperidine rings has been determined with respect to both the configuration on the ring and at the carbonoxygen bond as shown in Scheme V. From the 4phenylpiperidinyl amide 21 the equatorial three amino alcohol 22 is obtained in 76% yield in four steps. In this sequence a mixture of diasteromeric amido alcohols 23 is converted to only the three amino esters 24 showing that the three stereospecificity is achieved during the acid driven N-to-O acyl migration. The erythro amino alcohol 28 can also be obtained from the mixture 23. A sequence of oxidation, equilibration, and reduction of 23 also provides the diastereomers 29 and 30. In a similar sequence the piperidine derivative 25 was converted to the ester 26, hydrolysis of which gives an epimer of conhydrin $27.^{11}$

The success of the α -trisubstituted systems 11 and 15 in providing activation for metalation by a carbonyl group which is stable to the organolithium base while being sufficiently reactive for cleavage of the substituted amide is attributed to appropriate steric hinderance at the carbonyl. The advantages of ease of preparation and use of these systems is counterbalanced by the severe conditions required for the cleavage.

A number of amides have been studied in which additional activation for metalation is provided by carbon-carbon unsaturation. The dianion of N-benzylbenzamide (31), which can be generated from the amide

TABLE I. Formation of N-(α -Lithioalkyl) Trisubstituted Acetamides and Reactions with Electrophiles

	hase	town %C	acluant	alastrophile	neduct		f
reactant	Dase	temp, C	solvent	electrophile	product	yield, %	rei
(C ₂ H ₅) ₃ C−−−⊂	sec-BuLi•TMEDA	-78	THF	CH₃OD	(C ₂ H ₅) ₃ C-C-N	90 (>95% d ₁)	10
CH 3		79	THE	(0.11.) 00	Сн _а	01	10
	sec-Bull-1 MEDA	-78	THE	$(C_6H_5)_2CO$	9 он <u> </u>	91	10
					CH3 CH3		
9 S2H5	sec-BuLi•TMEDA	-18 → 0	Et_2O	$CH_{3}OD$	p	91 (93% d ₁)	11
(C ₂ H ₅) ₃ C −− C [′] −−√							
°C₂H5					(C₂H₅)₃CĊŃ		
		19 . 0	Et O		С ₂ н ₅	05	11
	sec-Dully I MEDA	-18 0	Et_2O	<i>n</i> -C ₁₂ n ₂₅ Br	ў 12" '25 // 9 снена	00	11
					(C ₂ H _E) ₂ CN		
					C ₂ H ₅		
	sec-BuLi•TMEDA	-78	Et_2O	C ₆ H ₅ CHO	носнсена	48	10
					CHCH3		
					(C ₂ H ₅) ₃ CĈŃ		
0 0	sec-BuLi-TMEDA	-78	Et ₀ O	CH*OD	С ₂ н ₅ _ D	$94 (>92\% d_1)$	10
(C2H5)3C-C-N			2020	011302			10
		70	Et O		(C2H5)3C-CN	70	10
	sec-Bulli I MEDA	-78	Et ₂ O	C ₆ H ₅ CHU		72	10
					(C2H3)3C-C-N		
	sec-BuLi•TMEDA	-78	Et_2O	n-C ₆ H ₁₃ CHO	ОН	85	10
					сн-с ₆ н ₁₃ -л		
					(C2H2)3C-C-N		
	sec-BuLi•TMEDA	-78	Et_2O	$(CD_3)_2CO$	үн	69	10
					C(CD ₃) ₂		
	sec-BuLiTMEDA	-78	Et-O	(CHa)-CO	QH QH	37	10
			2020	(0113)200	C(CH ₃)2	01	10
		-			(C2m5/30-C-1)	07	10
	sec-Bull-TMEDA	-78	Et_2O	$(U_6H_5)_2UU$	ŬC H)	35	10
					(C2H5)3C-C-N		
i /	sec-BuLi•TMEDA	$-18 \rightarrow 0$	Et_2O	CH3OD		92 (>92% d_1)	11
(C ₂ H ₅) ₃ CCN					(C2H5)3C-C-N		
	sec-BuLi•TMEDA	-78, -18 → 0	Et_2O	C ₆ H ₅ CHO	үн	72	10, 11
					ch-c ₆ H ₅		
	egg-BulliTMEDA	-78	Et.O	*-C-HCHO	0H	67	10
	Sec-Dully I MEDA	10	1120	11-0611130110	CH-Caller-a	01	10
					(C ₂ H ₅) ₃ C-C-N		
	sec-BuLi•TMEDA	-78	Et_2O	$(CD_3)_2CO$	он 	64	10
					(C ₂ H ₅) ₃ C-C-N		
	sec-BuLi•TMEDA	$-18 \rightarrow 0$	Et_2O	C_2H_5CHO	он	65	11
					CHC2H3		
8	sec-BuLi-TMEDA	$-18 \rightarrow 0$	Et ₂ O	CH₄OD		87 (90% d.)	11
(C2H5)3C-C-1	*	-		0 - -	ů ,	· (· · · · · · · · · · · · · · · · · ·	
\smile					C2H2130−C6H2		

TABLE I (Continued)

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref
	sec-BuLi•TMEDA	-18 → 0	Et_2O	$n-C_4H_9I$		69	11
	sec-BuLi·TMEDA	$-18 \rightarrow 0$	Et ₂ O	C ₆ H ₅ CHO	C ₂ H ₅ /3 CH CH C ₆ H ₅	78	11
(CeHs)3C-C-N	sec-BuLi	-40	THF	n-C ₆ H ₁₃ I	$(C_2H_5)_3C$ C_1 C_2H_5 C_6H_5	88	9a
°сн ₃	sec-BuLi	-40	THF	C ₆ H₅CHO	СН ₃ Он СН ₂ СН—С ₆ Н ₅	70	9a
(с _е н _{э)3} с—с_м	t-BuLi	- 40 → 0	THF	C ₆ H ₅ CHO	сн _з он сн—с _е н ₅	62	9b
(C ₆ H ₅) ₃ C-C-N	t-BuLi	$-40 \rightarrow 0$	THF	(CH₃)₃CCHO	(с ₆ н ₅) ₃ с— с ['] — N он 9 (нс(сн ₃) ₃	38	9b
	sec-BuLi	$-40 \rightarrow 0$	THF	(C ₆ H ₅) ₂ CO	С ₆ H ₅) ₃ C-С-Он Он (С ₆ H ₅) ₃ C-С-Он	52	9b
(CeH 5/3C-C-N	t-BuLi	$-40 \rightarrow 0$	THF	$(C_6H_5)_2CO$	Q (CeHe)3C CEHe)3C CEHe)3C	39	9b
(C ₆ H ₅) ₃ C-C-1 C ₆ H ₅	t-BuLi	$-40 \rightarrow 0$	THF	C ₆ H₅CHO		13	9b
SCHEME VI				SCHEME VII	196-3-30 0 · · · · · · · · · · · · · · · · · ·		
$R \xrightarrow{H}_{H} R_{2} \xrightarrow{2RL_{1}} R$	$\begin{array}{c} & & \\$		GH5	CH ₃ N CH(C ₆ H ₅	LDA THF, -IB °C	,CH(C ₆ H ₅) ₂ — ,CHR	-
32,37 0	€+ † 2	33 F		$35, R = C_6H_s, CH_s$	H_{3}, H $CH(C_{6}H_{5})_{2}$ Li^{+} CHR CH_{3} CH_{3} CH_{3}	H(C ₆ H ₅) ₂	
R		H ₂ NCHC ₆ H ₅			36, $R = C_6 H_5$ (77%), (н СН ₃ (61%), 1	H (61%)
31 , $R = R_1 = C_6H_5$, R 32 , $R = R_1 = C_6H_5$, R 37 , $R = C_6H_5$, $(CH_3)_3$ 38 , $R = C_6H_5$, $(CH_3)_3$	$_{2}^{2} = H$ $_{2}^{2} = H$ $C, R_{1} = R_{3}C = CH_{2}, H$ $C, R_{1} = R_{3}C = CH_{2}, R$	$R_2 = H, C_6H,$ $R_2 = H, C_6H,$	5	somewhat bett tivated cases. The dimetal investigated. ^{12k} lithium reagen	er yield in the benzyl ation of <i>N</i> -allylamides ^b Reaction of the inte t 38 with n-butyl iod	than in the 37 has also rmediate o ide results	e unac- so been organo-
32, reacts with alkyl h	alides and aldehyd	les to produ	uce	dition exclusive	ely to the γ -position, a	affording e	namide

3 33 in 70-95% yields as shown in Scheme VI and Table III.¹² Hydrolysis to substituted benzylamines 34 is facile. Thus, 31 is a useful α -lithiobenzylamine synthon.12a

Benzyl activation may also supplement dipole stabilization in the formation of the intermediate in the ring expansion of diazetidines 35 to imidazolidines 36 shown in Scheme VII.¹³ The reaction proceeds in products as shown in Scheme VI in 75-99% yields (Table III). Since protonation of the intermediate occurs at the γ -position, migration of the double bond into conjugation with enamide nitrogen is achieved, thereby providing a useful procedure for the preparation of enamides.

The pivalamide of tetrahydroisoquinoline 39a as well as the amides 39b and 39c have been metalated to

TABLE II. Formation of a-Substituted Amines via Trisubstituted Acetamides

 a A = 6N HCl, 72 h at reflux; B = CH₃OH/HCl (concd), 17 h at reflux and then (CH₃)₃COK (6 equiv)/H₂O (2 equiv)/(CH₃)₃COH, 35 h at reflux; C = CH₃OH/HCl (concd), 17 h at reflux and then LiAlH₄; D = Na (4.5 equiv)/naphthalene (0.15 equiv)/THF, 2 h at ambient temp and then HCl (concd), 1 h at reflux; E = CH₃Li (6 equiv)/THF, 16 h at reflux. ^bFrom amine.

SCHEME VIII

provide the α -amido carbanions 40 which react remarkably well with alkyl halides, aldehydes, ketones, trimethylchlorosilane, and tributyltin chloride to give substituted amide products in yields of 56–94% as shown in Scheme VIII and Table IV.¹⁴ Conversion of **39a** to the amine **41a** can be achieved with strong base or aluminate reduction as summarized in Table V. This appears to be a unique example of pivalamide utility, since the aromatic ring seems necessary for the preparation of **40** as a stable intermediate. *N-N*-Dimethylpivalamide itself has been found to undergo extensive self-condensation upon metalation^{15a,b} as does *N,N*-dimethyl-1-adamantane carboxamide.^{15c}

Other examples of α -amido carbanions at activated positions of heteroaromatic rings are provided by the metalations of the N-benzylpyridone 42 (Y = CH, Ar

dl-conhydrine

= C_6H_5) and N-benzylpyrimidone 43, (Y = N, Ar = C_6H_5) as shown in Scheme IX.¹⁶ Lithiation and reaction with carbonyl compounds provides substituted products 44 in yields of 12–85% as summarized in Table VI. With N-alkylpyridones 45 lower yields of electrophilic substitution products are obtained upon additions to aldehydes and ketones.^{16a,c}

TABLE III. Formation of N-(a-Lithio) Amides with Carbon-Carbon Unsaturation and Reactions with Electrophiles

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref
	LDA, LiTMP, or <i>n</i> -BuLi ^a	-78	diglyme	n-C ₄ H ₉ I	C4H9 ⁻ /	95	12 a
	LDA, LiTMP, or <i>n</i> -BuLi ^a	-78	diglyme	CH₃I		79	1 2a
	LDA, LiTMP, or <i>n</i> -BuLi ^a	-78	diglyme	C ₆ H ₅ CH ₂ Cl		79	12 a
	LDA, LiTMP, or <i>n</i> -BuLi ^a	-78	diglyme	C ₆ H₅CHO	он он он он он он он он он	71	12a
	LDA or <i>n</i> -BuLi ^b	-78	diglyme	n-C₄H9I		91	12b
	LDA or <i>n</i> -BuLi ^b	-78	diglyme	n-C₄H9I		77	12b
	LDA or <i>n</i> -BuLi ^b	-78	diglyme	n-C₄H9I		75	1 2 b
	LDA or <i>n</i> -BuLi ^b	-78	diglyme	n-C₄H9I		99	12b
(CH4)3C-C-N	LDA or <i>n</i> -BuLi ^b	-78	diglyme	n-C₄H9I	(CH ₃) ₃ C-C-N	88	12b
4 • 2.5 equiv. • 2 equiv.					Η ċ₅H ₁₁ - <i>n</i>		

Interesting new cases in which dipole stabilization of a bridgehead α -amino carbanion may be supplemented by the effects of other substituents are the formations of 46,¹⁷ 47,¹⁸ and 48.¹⁹ These organolithium reagents

undergo alkylation and acylation in useful yields. The systems 48 demonstrate that the carbanionic center need not be sp^2 hydridized and that stabilization by nitrogen and a carbonyl group is sufficient for stabilization of the formal carbanion.¹⁹

Although, in general, activated cases will not be covered in this review there are approaches to electrophilic substitution adjacent to amino nitrogen in which dipole stabilization by an amide supplements a more well-recognized carbanionic stabilization by another group. An example of this methodology is the substitution of a nitrile α to an amine, followed by formation of the amide, lithiation, reaction with an electrophile, and reductive cleavage. In this way piperidine has been converted to $erythro-2-(\alpha-hydroxypropyl)$ piperidine SCHEME XI $LiNR_{2}$ col $H = C_{N}R \xrightarrow{R'Li} M = C_{N}R \xrightarrow{E^{+}} E^{-}$

50, R = alkyl 51, Y = O, M = Li, Cu 52, E =
$$CR'_2OH$$

57, Y = O, R = $n \cdot C_3H_7$, C(=O)R', R'
R = $N(n \cdot C_3H_7)_2$
63, Y = S

(dl-conhydrine) as illustrated in Scheme X.²⁰ The use of 49 as an α -lithioalkylamine synthetic equivalent is stereochemically complimented by the conversion of 25 to threo-2-(α -hydroxypropyl)piperidine discussed above.

It is possible to achieve not only the removal of a proton from the carbon adjacent to the nitrogen of an amide but also from the acyl carbon itself. Thus, as shown in Scheme XI, reaction of a number of formamides 50 with alkyllithium reagents provides 51, a true acyl anion which reacts with the usual electrophiles to give α -hydroxyl amides, α -keto amides, and homologated amides 52 (Table VII).^{5,21} Extension of this approach to the optically active formamide 53 provides the chiral organolithium reagent 54 which reacts with acetophenone, phenyl isopropyl ketone, and 3,3-dimethyl-2-butanone to give diastereomeric hydroxy ketones 55 in 70–80% yields. Separation of the diaste-

478 Chemical Reviews, 1984, Vol. 84, No. 5

TABLE IV. Formation of N-(α -Lithio) Amides of Tetrahydroisoquinolines and Reactions with Electrophiles

reactant	base	electrophile	product	yield, %	ref
Î	sec-BuLi	C, H, CHO	рн	71	9b
(C6H5)3C-C-N			о сн—сен _а		
			C6H5)3C-C-N		
	sec-BuLi	C ₆ H ₅ CH,Br	о С. С. Н ² Сен ²	64	9Ъ
	-	v 3 é	(C6H5)3C-C-N-1		
2	sec-BuLi	$C_6H_5CH_2Br$		0.0	01-
	(2 equiv)			66	ар
			(C6H2)3C-C-N		
ОН			Ţ, Ţ		
	t-BuLi	CH3I		94	14, 119
ICH393C-C-N			(CH3)3C-C-N		
· ·	<i>t</i> -BuLi	$n-C_{8}H_{17}Cl$		85	14, 119
		$n - C_{s} H_{17} Br$ $n - C_{s} H_{17} I$		85 86	
	4 D. T :		CHICH-Ja	90	14 119
		$(CH_3)_2$ CHI		50	14, 110
			(c) (3/3)		
	t-BuLi	Ŧ	\bigcap	89	14, 119
		\bigcirc			
		\checkmark	(CH3)3C-C-I		
	t-BuLi	CH ₂ Br		77	14, 119
			(CH3)3C-C-N		
	+ 1211 T i	(CH) SICI	Si(CH _x) ₃	88	14 119
	t-Dulli	(0113)35101			
	<i>t</i> -BuLi	$(n-\mathrm{C}_{4}\mathrm{H}_{9})_{3}\mathrm{SnCl}$	O Sn(<i>n</i> -C ₄ H ₉) ₃	84	14, 119
			(CH3)3C-C-N		
	t-BuLi	C₂H₅CHO	он I	69	14
			(CH3)3C-C-N		
	t-BuLi	C, H, CHO	ОН	78	14
		ů ů	O CH-−−C ₆ H₅		
			(СН3)3С-С-И		
	t-BuLi	ç	\sim	75	14 119
	t-Dubl	<u> </u>	р 🖌 он	10	17, 11 <i>0</i>
		\square	(CH3)3C-C-N		
	t-BuLi	(\mathbf{C},\mathbf{H}) CO	, он	83	14, 119
	1 1111	(06115)200	₀ ⊂(C ₆ H₅)₂		,
			(СН3)3С-С-И		
	4 D t :	T	(CH-)-C	45	14
	(-DUL)	12	ç=0	70	74
CL	(D. 7)			50	1/ 110
	t-BuLi	CH3I		59	14, 110
	t-BuLi (2 equiv)	CH3I		56	14
ICH3)3C-C-N	(= oquii)		(CH3)3Ċ-Ċ-N		
~ ~			$\sim \sim$		

TABLE V. Formation of α -Substituted Tetrahydroisoquinolines via Amides

reomeric mixtures and treatment with excess methyllithium leads to enantiomerically pure mixtures of α hydroxy ketones and 1,2-diols 56²² as shown in Scheme XII and Table VII.

An alternative generation of the acyl anion 51 from a lithium dialkylamine and carbon monoxide provides another method of elaborating dialkyl amines to 52, although α -keto amides arising from a second addition of carbon monoxide prior to electrophilic addition are also obtained.²³ Analogously, reaction of bis(N,N-diethylcarbamoyl)cuprate 51 with methyl iodide, phenyl iodide, allyl bromides, acyl halides, or methyl vinyl ketone affords substituted products 52 ($R = C_2H_5$) in 10-65% yields, based on starting diethylamine (Table VIII).²⁴ Carbonylation of lithium tri-*n*-propylhydrazide has been reported to provide 57 (Scheme XI) which undergoes reaction with aldehydes or ketones to give hydroxy carbonyl hydrazines which can be reductively cleaved to substituted-propyl amides in useful yields.²⁵ Lithium (N.N-dimethylcarbamoyl)nickel carbonylate has also been shown to effect carbamoylation of vinylic and aromatic halides.²⁶ Since reductions of these amide products to tertiary amines should be possible with hydride reagents the organometallics 51 are potential tertiary α -lithioamine synthetic equivalents (See Addendum).

B. Thioamides (Z = C(=S)R)

The use of N,N-dimethylthiopivalamide (58) to provide 59, the synthetic equivalent of (α -lithiomethyl)methylamine and (α -lithiomethyl)methylneopentylamine, has been developed as shown in Scheme XIII.²⁷

Reaction of 59 with alkyl halides, aldehydes, or ketones gives the expected products in 12-82% yields (Table IX). The substituted thioamides can be hydrolyzed to pivalamides 60 or secondary amines 61, or reduced to neopentylamines 62. Substituted products could not be obtained from N-methyl-N-benzyl-, N-methyl-Nphenyl-, N,N-diethyl-, or N,N-pentamethylenepivalthioamides. The α -azo metalation of a wide variety of N,N-dialkyl thioamides with palladium dichloride has also been recently reported, and further development of such transition-metal species can be expected.²⁸ The formyl proton of N.N-dialkylthioformamides can be removed to provide an acyl anion 63 (Scheme XI), which reacts with aldehydes and ketones to afford substituted thioamide products in yields of 10-83% (Table X), analogous to the reactions of $51.^{29}$

C. Imides $(Z = (RC(=0))_2)$

The use of a tetrasubstituted N-methylsuccinimide to provide the α -lithiomethylamine synthetic equivalent has been reported and reviewed.^{5,30}

D. Ureas $(Z = R_2NC(==0))$

The problem of achieving cleavage of electrophilically substituted derivatives of α -lithio amides, thioamides, and imides has generally been addressed by using forcing conditions for hydrolyses and reductions. A more imaginative approach has been reported using fragmentation of methyl and activated urea derivatives by Seebach and co-workers. They have found that the N,N-dimethylureas 64 and 65, as shown in Scheme XIV

TABLE VI. Formation of a-Amido Exocyclic Carbanions of Heterocycles and Reactions with Electrophiles

reactant	electrophile	procedure ^a	reaction time, h	product	yield, %	ref
Çe ^H 5	CH3I	A	1.5	Ç6 ^H 5	76	16b
C6H5 CH2				C6H5 CHCH3		
Ć ₆ ∺₅	C_2H_5I	В	3	Ċ _e ∺₅ Çe [∺] s	20	16b
				C6H5 CC2H5		
	C ₆ H ₅ COCl	А	3		71	16b
	C ₆ H ₅ CO ₂ CH ₃	В	6		12	16b
	p-CH₃C₅H₄COCl	А	3	CeHs CeHs CeHs CeHs FeHs	67	16b
				CeHs CHCCeH4CH3-P		
	o-CH₃C₀H₄COCl	A	3		39	16b
	p-CH₃OC ₆ H₄COCl	A	3	CeH5 CeH5	56	16b
	p-ClC ₆ H ₅ COCl	A	3	CeHS TO TO TO TO CHCCeH40CH3-P	38	16b
	C ₆ H5CHO	A	2.5	CeHs CFCCeHaCI-p CeHs CeHs CeHs	78	16b
		Å	0 5	CeHs OH CH-CH-CeHs CeHs C-H	05	161
	<i>p-</i> ∪n₃∪ ₈ n₄∪HU	A	2.5		85	100
	<i>p</i> −CH₃OC ₆ H₄CHO	A	2.5		50	16b
				Он Сн—Сн—С ₆ н ₄ осн ₃ - <i>р</i> С ₆ н ₅		

TABLE VI (Continued)

reactant	electrophile	procedurea	reaction time, h	product	vield. %	ref
	p-ClC ₆ H₄CHO	A	2.5	се ^н 5	65	16b
				C ₆ H ₅ OH		
				CHC ₆ H₄CI-⊅ │ C ₆ H ₅		
	m-ClC ₆ H ₄ CHO	Α	2.5	CeH5	60	16b
				С6 ^{нъ} О́н С́н—С́н—С ₆ н ₄ Сі- <i>т</i>		
	(0.11.) 00		0.5	 С ₆ Н ₅ С.Н.	-	
	$(C_6 H_5)_2 CO$	A	2.5	6 .3	72	16b
				ĊH—-Ċ(C ₆ H₅)₂		
	(CH ₃) ₂ CO	А	2.5	⊂ ₆ ⊓₃ C ₆ H₅	60	16b
				\bigwedge		
				C ₆ H ₅		
	$\sim = 0$	A	2	CoH5	75	16b
	—			CeH3		
				сн он сн у		
	ClCO ₂ C ₂ H ₅	A	4	Ċ ₆ н₅ Ç ₆ н₅	84	16b
			•		01	100
				ĊHĊOC₂H₅ CoHe		
C ₆ H ₅	(CH ₃) ₂ CO	Α	3	Ce ^H 5	78	16b
				септа он сн—с(сн _з) ₂		
 C ₆ H ₄ CH ₃ - <i>p</i> C-H-			0. F	 C ₆ H ₄ CH ₃ - <i>p</i> C-H-	22	
Je	C ₆ n ₅ CnO	A	2.5	F6 ⁻¹⁵	68	16b
C ₆ H ₅				C _{EH5} OH		
				ĊH −− ĊH−−−C ₆ H₅		
C ₆ H ₅ C-0 C ₆ H ₅	CH₃I	A	10	C ₆ H₄CI-⊘ Ç ₆ H₅ I	25	16c
				\square		
C ₆ H ₅ V CO				CeHs O		
- 5	$(C_6H_5)_2CO$	Α	12	Ç ₆ H ₅	67	16c
				чен5 ти СО ОН СН2С(С6H5)2		
	$\mathrm{C_6H_5CO_2C_2H_5}$	В	12	CeH5	25	16c
				CeH5 0		
				сн ₂ —С ₆ н ₅		

482 Chemical Reviews, 1984, Vol. 84, No. 5

TABLE	VI	(Continued)

reactant	electrophile	procedure	time, h	product	yield, %	ref
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	(C ₆ H ₅) ₂ CO	Α	8	GeH5	48	16c
CeHe O				CeHs OH		
OH20H3				СНС(С ₆ Н ₅) ₂ СН ₃		
	p-CH ₃ C ₆ H ₄ CHO	А	10	C ₆ H ₅	44	16c
				C ₆ H ₅		
				CH—CH—C ₆ H ₄ CH ₃ -p		
	$C_6H_5CO_2CH_3$	В	4	CH3 Ce ^{H5}	12	16c
Çe [⊣] s	(CaHe) CO	А	10	 Сн₃ Ģе∺5	64	16c
	(- 0 0 / 2		-		-	
CeHe CHe						
C3H2-7				C3H7*/		
N N	D_2O	A	10	V V	90	160
C6H5 NO				C6H5 0		
Сн ₂ С ₆ н ₅				CHD C ₆ H ₅		
	CH3COCI	Α	10	CeH5	48	16d
				CeH5 NO		
				сн—С—сн _а Ссна		
	C ₆ H ₅ COCl	Α	10	C ₆ H ₅	52	1 6d
				C ₆ H ₅		
				снс _е н ₅		
	p-CH ₃ C ₆ H ₄ COCl	А	10	C6H5 Ç6H5	54	16d
				сн-С-с ₆ н ₄ сн ₃ -р		
	$ClCO_2C_2H_5$	А	10	Ć ₆ H₅ ∫ ₆ H₅	35	16d
				CH-COC ₂ H ₅		
	$(C_6H_5)_2CO$	А	10	l _{c6} H5 C6H5	20	16d
				C ₆ H5		
	₽-CH₀C₄H∠CHO	А	10	 С ₆ н ₅ Ç ₆ н ₅	40	16d
	P*300**40**0	••				

TABLE VI (Continued)

 $^{\circ}A$ = Reactant added to a THF solution of LDA at -78 °C, the electrophile was subsequently added; B = LDA was added to a THF solution of reactant and electrophile at -78 °C.

and Table XI, undergo lithiation to give 66 which adds readily to aldehydes, ketones, and alkyl halides to give 67.³¹ Derivatives of 65 undergo hydrolysis to the substituted amines 61 under the usual strong conditions. The hydrolysis of derivatives of 64, however, can be driven by a retro-Mannich fragmentation to ethylene glycol, acetone, and ammonia under milder conditions.

The same strategy has been used to achieve lithiation, substitution, and cleavage of the N-allyl-N-methylurea 68. In this case reaction of the intermediate organolithium reagent 69 with alkyl halides, ketones, or aldehydes provides mixtures of α - and γ -substituted products, 70 and 71. With a change in the counterion from lithium to magnesium, γ substitution is favored.³² These results are summarized in Scheme XIV and Table XII.

E. Carbamates (Z = ROC(==0))

The 2,4,6-tri-*tert*-butylphenoxyl moiety has also been demonstrated to provide sufficient steric protection of the carbonyl of 72 to allow deprotonation to afford 66 which reacts with alkyl halides, aldehydes, and ketones to provide 67 in moderate yields as shown in Scheme XIV and Table XIII.³³ The substituted tertiary dimethylamine 73 can be obtained by reduction, while reaction with aluminum chloride affords a phenyl carbamate which can be hydrolyzed to $61.^{31}$

Allyl activation has been used in the carbamate as well as the urea systems. The carbamate 74a derived from 3-pyrroline and the vinylogous carbamate 74b in Scheme XV have been shown to undergo lithiation on the pyrrolidine ring. The carbamate 74a is particularly useful and has been shown by Armande and Pandit³⁴ to undergo metalation to give an α -azo carbanion which

reacts with alkyl halides to afford **75a**. Macdonald has shown that sequential lithiation and alkylation generates *trans*-2,5-dialkylpyrrolines **76** with high regio- and stereoselectivity.³⁵ For example, the ant poison **77** was prepared in 38% yield from **74a** by this methodology.³⁵ Olefin reduction, hydrolysis, and cyclization were employed in the synthesis of indolizidine and pyrrolizidine alkaloids; thus, the ant trail phermone **78** was prepared from **74a** in 15% overall yield. These results and those with related systems are summarized in Table XIV (See Addendum).

It should be noted that allyl and/or benzyl activation, by itself can be sufficient to allow the direct preparation of synthetically useful α -lithio amines. For example **79**,^{36a} **80**,^{36b} **81**,^{36c} and **82**^{36d} have been reported. Such

species however, are more commonly used as homoenolate synthetic equivalents, as illustrated by the conversion of 83 to 84 via 81 and 85 in Scheme XVI, than for amine elaboration. It appears that these organolithium reagents could be exploited as α -lithio amine synthetic equivalents in conjunction with reductions or reactions of the enamines.^{36a}

86 which also adds efficiently to the usual electrophiles. The organolithium reagents 87a and 87b available from

tetrahydroisoquinoline react readily with alkyl halides, alkehydes, ketones, and epoxides to give substituted phosphoramides which are susceptible to acid hydrol-

ysis to the corresponding amines as summarized in Tables XVI and XVII. It is notable that dialkylation

of 87a to provide 88 and phenylation of 87b to provide

89 has been achieved.38

TABLE VII. Formation of Acyl Anions from Formamides and Reactions with Electrophiles

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref	
н	t-BuLi	-95	THF/ether	$(C_6H_5)_2CO$		85	21	
١	t-BuLi	-95	THF/ether	C ₆ H ₅ CHO		80	21	
	t-BuLi	-95	THF/ether	(CH ₃) ₂ CO		81	21	
	t-BuLi	-95	THF/ether	C₂H₅CHO		62	21	
	t-BuLi	-95	THF/ether			83	21	
	t-BuLi	-95	THF/ether	C ₆ H ₅ CH=CHCHO		68 5	21	
	t-BuLi	-95	THF/ether	$\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}\mathrm{C}_{2}\mathrm{H}_{5}$	 ссс _{ень}	70	21	
	t-BuLi	-95	THF/ether	D_2O	$\langle \mathbf{v} = \mathbf{v} = \mathbf{v}$	70	21	
	t-BuLi	-95	THF/ether	$C_6H_5CH_2Br$	 ссн₂_сен₅	68	21	
CH0	LiTMP	-100	THF	CH3COC(CH3)3		80	22	
	LiTMP	-100	THF	C ₆ H ₆ COCH ₃	сна-с-он	71	22	
	LiTMP	-100	THF	C ₆ H ₅ COCH(CH ₃) ₂	$C_{6}H_{3}$ $C_{6}H_{5}$ $C_{$	77	22	
F. Phosphora	mides (Z	= P(==0)	(NR ₂) ₂)			$\overline{}$		
There have be a carbanion ad amide. Activat phoramides has carbanionic intra alkyl halides ar Hexamethylpho	There have been several reports of the formation of a carbanion adjacent to the nitrogen of a phosphoramide. Activated benzylic, allenic, or vinylic phosphoramides have been shown to form stable α -azo carbanionic intermediates which undergo addition to alkyl halides and carbonyl compounds (Table XV). ³⁷							

88, $R = E = CH_3$ 89, $R = H, \dot{E} = C_6H_5$

G. Nitrosoamines (Z = NO)

The discovery, development, analysis, and use of α -azo carbanions from nitrosoamines has been reviewed.^{5,39} It has been shown that primary, secondary,

TABLE VIII. Formation of Acvl Anions from Lithium Amides and Carbon Monoxide and Reactions with Electrophiles

acyl anion	solvent	temp, °C	electrophile	product	yield, %	ref
	DME/THF	-75	\bigcirc		ca. 68	23
\bigcup	DME/THF	-75	∬ CH₃I		ca. 33	23
	DME/THF	-75	Ļ		ca . 50	23
	THF/HMPA	80	CH ³ I	С₂Н₅ _№_С-СН3	10	24
	THF/HMPA	80	C ₆ H ₆ I	C ₂ H ₅	49	24
	THF/HMPA	-78 → ambient, 80	CH₃COBr	с ₂ н ₅ с_н ₅ 0ссн ₃	70, 65	24
	THF/HMPA	$-78 \rightarrow \text{ambient, } 60$	C ₆ H ₅ COBr	c_2H_5 c_2H_5 N $c_2C_6H_5$	64, 74	24
	THF/HMPA	$-78 \rightarrow \text{ambient}, 80$	C ₆ H ₅ COCl	c_2H_5	23, 60	24
	THF,HMPA	60	$ClCO_2C_2H_5$		36	24
(<i>n</i> -C ₃ H ₇)₂N—N—C—Li	THF	-75	n-C ₅ H ₁₁ CHO	$(n - C_3 H_7)_2 N - N - C - C H - C_5 H_{11} - n$	6085	25
C3H7- <i>n</i>	THF	-75	CH2=CH(CH2)8CHO	С ₃ H ₇ -л р рн (л-С ₃ H ₇) ₂ N—N—С—Сн(СН ₂) ₆ CH—СH ₂	60-85	25
	THF	-75	#r	c_{3H_7} , c_{3H_7} , c_{3H_7} , c_{3H_7} , c_{0H}	60–85	25
	THF	-75	↓ #t	$(a-C_3H_7)_2N$ C C	60-85	25
	THF	-75	$CH_3CO(CH_2)_2CH = C(CH_3)_2$	$c_{3H_7-\sigma}^{C_{3H_7-\sigma}}$ $(\sigma - c_{3H_7})_2 N - N - C - C - (CH_2)_2 CH = C(CH_3)_2$	6085	25
	THF	-75	CH₃I	с́зн ₇ -л с́нз (л-сзн ₇) ₂ N— N— с́— снз	ca. 60	25
	THF	-75	<i>n</i> -C ₃ H ₇ I	(n-C3H1)2N-N-CC3H2-n	ca. 30	25
	THF	-75	$CH_3CO_2C_2H_5$	(n-C ₃ H ₇) ₂ N-N-C-C-CH ₃	ca. 35	25
	THF	-75	$(CH_3)_2CHCO_2C_2H_5$	с ₃ н ₇ -л (л-с ₃ н ₇) ₂ N—N—С—С-сн(Сн ₃) ₂	ca. 55	25
	ether	ambient	trans-C ₆ H ₅ CH = CHBr	C _{3H7} -n (CH ₃) ₂ NCCH=CHC ₈ H ₅ - <i>trans</i>	96	26
	ether	ambient	C ₆ H ₅ I		98	26
	ether	ambient	$C_6H_5CH_2Br$	ССН ₃)2NCCH ₂ C ₆ H ₅	65	26
	ether	ambient	CH2=CHCH2Br	CH3)2NCCH2CH=CH2	36	26
	ether	ambient	Br	(CH3)2NC	99	26

	FABLE IX. Formation of N	·(α-Lithiomethyl)-N-m	nethylthiopivalamide	and Reaction with	Electrophiles
--	---------------------------------	-----------------------	----------------------	-------------------	---------------

reactant ^a	electrophile	product	yield, %	ref	
X N CH3	CH₃I	N CH2CH3	80	27	
	n-C ₅ H ₁₁ I	S CH ₂ C ₅ H ₁₁ - <i>n</i>	82	27	
	n-C ₁₀ H ₂₁ Br	CH ₂ CH ₂ CH ₂ - <i>n</i>	79	27	
	$C_6H_5CH_2Br$	CH ₂ CH ₂ CH ₂ C ₆ H ₅	44	27	
	I(CH ₂) ₄ I	S CH ₂) ₆ S CH ₂ CH ₂	67	27	
	Br(CH ₂) ₄ Cl	CH2(CH2)4CI	65	27	
	C _€ H₅CHO		70	27	
	$(C_6H_5)_2CO$	CH3 OH NCH2C(C6H5)2	63	27	
	сно	N CH ₂ CH 1 0	48	27	
	(CH ₃) ₂ CHCHO		23	27	
	Ļ		17	27	
	CH ₃ CON(CH ₃) ₂	S N CH ₂ CCH ₃	32	27	
	Å	CH3 OH NCH2CH2C(CH3)2	12	27	
		СН3			

^a Metalated with sec-BuLi·TMEDA in THF at -78 °C.

and tertiary positions adjacent to the nitrogen of nitrosoamines (90–92) can be metalated with lithium diisopropylamine or alkyllithium bases at low temperatures to form the intermediate 93, which reacts with electrophiles to yield 94 as shown in Scheme XVII. Useful electrophiles include alkyl and allyl halides,⁴⁰ ketones and aldehydes,^{39–41} cyanides,⁴² acyl halides,³⁹ and sulfur, tin, selenium, and silyl heteroatom electrophiles.⁴³ The substituted nitrosoamines 94 generally are produced in moderate to excellent yields, and denitrosation to substituted amines 95 can be achieved with gaseous hydrogen chloride or under reducing conditions with Raney Nickel.^{39,44} A "one-pot" procedure, designed to minimize contact with the potentially carcenogenic nitrosoamines has been reported; it involves LiAlH₄ reduction of the nitrosoamine to the corresponding hydrazine prior to Raney Nickel reduction.⁴⁵ As α -lithioalkyl alkylamine synthetic equivalents the α -lithioalkyl nitrosoamines represented by 93 appear to have advantages over alternatives; however, because of the potentially hazardous nature of nitrosoamines they have been less widely used than their utility might warrant.

In view of the previous reviews^{5,39} the present discussion will focus on recent work. Seebach et al. have noted that nitrosoamines can be metalated rapidly with

TABLE X. Formation of Lithiothioformamides and Reactions with Electrophiles

reactant ^a	electrophile	product	yield, %	ref
S CH3	(C ₆ H ₅) ₂ CO	он снз	80	29a
HCN_CH3	C H CHO	(C6H5)2C-C-N CH3	65	200
	C ₂ H ₅ CHO	C ₂ H ₅ CH-C-NCCH ₃	65	298
	C ₆ H ₅ CHO		65	29a
	(CHa)aCO	он з	75	29a
		(CH ₃) ₂ C-C-NCH ₃		
	Ĺ		50	29a
	C.H.COCH.	он з	50	299
	C6115000113	с ₆ н ₅ —С—С—N Сн ₃	00	274
	$C_6H_5CO_2CH_3$		75	29a
	CH₃I	Сн ₃ В сн-	45	29a
		сн3-сн3		
	C_2H_5I	C ₂ H ₅ -CH ₃	48	29a
	(CH ₃) ₃ SiCl	(CH3)3SI-CH3	36	29a
s uC−v_⊂ ^{CH} 3	$(C_6H_5)_2CO$		55	29a
с(сн ₃)3	(CeHz)CO	он S	79	29a
	(06110)200	$(C_6H_5)_2C - C - N - CH_3C_6H_5$		
H-C-N C2H5	$(C_{6}H_{5})_{2}CO$	ОН S (С ₆ н ₅) ₂ С—С—N С ² н ₅	83	29a
°C ₂ H ₅	C ₆ H ₅ CHO	С ₂ H ₅ С ₂ H ₅ С ₆ H ₅ CH	70	29a
S C4H9-7	(C ₆ H ₅) ₂ CO	он s С4Н9-л	10	29a
HCN'C4H9-1	C.H.CHO	(C ₆ H ₅) ₂ C — C — N ⊂ C ₄ H ₉ - <i>n</i> OH S	45	<u> </u>
	Carre Circo	$C_{6}H_{9}CH - C - N C_{4}H_{9} - n$	10	204
	(()) co		62	29 a
	· · · · · · · · · · · · · · · · · · ·	(
H	C ₆ H₅CHO		20	29a
H-C-NC(C(H3)3	$(C_6H_5)_2CO$	OH 5 (C ₆ H ₅) ₂ CC-N (C ₆ H ₅) ₂ CC-N	54	29a
Сн ₂ —сн=сн ₂ н—сх ^{Сн₂с₆н₅}	$(C_6H_\delta)_2CO$	$CH_2 - CH_2 - $	70	29a
CH ₂ C ₆ H ₅	(C ₆ H ₅) ₂ CO	OH S	77	29a
	(C ₆ H ₅) ₂ CO		79	29a
H−c−N §	(C ₆ H ₅) ₂ CO		68	29a
H-C-N_ s	(0.11) 00	(с ₆ н ₅) ₂ с́—с́—м́) он s	60	2 9 a
H-C-N-CH3	(UgA5)2UU	(C6H5)2C-C-N-CH3	UU	208

 o Organolithium reagent generated by the action of LDA in THF at -100 °C.

reactant	reaction conditions ^a	electrophile	product	yield, %	ref
√ N CH3	А	$(C_6H_5)_2CO$		23	31
CH3	A	$(C_6H_5)_2CO$		43	31
\sim	Α	CH3I	N CH ₂ CH ₃ CH ₃	60	31
CH3	В	$(C_6H_6)_2CO$		81	31
	В	C ₆ H ₅ CHO		89	31
	В	<i>n</i> -C ₅ H ₁₁ CHO		75	31
	В	(CH ₃) ₂ CO	ОН СН ₂ С(СН ₃) ₂ СН ₃	52	31
	В	CH3I	CH ₂ CH ₃	78	31
	В	<i>n</i> -C ₁₀ H ₂₁ Br	СH ₂ C ₁₀ H ₂₁ - <i>п</i> СH ₃	68	31
CH3	В	(C ₆ H ₅) ₂ CO	$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	70	31
	В	C _€ H₅CHO		78	31
	В	<i>n</i> -C ₈ H ₁₇ I	С С С С С С Н ₂ С ₈ Н ₁₇ - <i>п</i> С Н ₂ С ₈ Н ₁₇ - <i>п</i>	72	31
$^{a}A = sec$ -BuLi-TMEDA in TH	IF at -80 °C for 6 h	n; B = sec-BuLi•TMI	DDA in THF at 0 °C for 1.5 h.		

potassium tert-butoxide/n-butyllithium/diisopropylamine, and that substituted nitrosoamines 94 are produced in high yields upon subsequent reaction with electrophiles.⁴⁶ The synthesis of α -stannylnitrosoamines 96 from methyl nitrosoamines is useful because these compounds undergo thermal addition to aryl aldehydes to give stannyl ethers which can be hydrolyzed to Nmethyl- β -aryl hydroxyl nitrosoamines. The yields of acylated nitrosoamines 97 from methyl nitrosoamines have been improved by the use of acyl cyanides instead of acyl halides or esters as electrophiles.⁴⁶ The carbomethoxylation of 93 with methyl chloroformate occurs selectively at the least substituted carbon of an unsymmetrical nitrosoamine unless the more substituted carbon bears an anion stabilizing group. Yields in the formations of acyl nitrosoamines ranged from 60 to 95%.⁴⁷ Although alkylations and α -hydroxyalkylations of benzyl methyl nitrosoamines can provide thermodynamically or kinetically controlled product mixtures depending on reaction conditions,^{39,48} carbomethoxylation occurs exclusively at the benzylic position.

Metalated nitrosoamines have been used in the synthesis of tetrazines,⁴⁹ triazoles,⁵⁰ the hemlock alkaloids 98 and 99,⁴⁴⁵ and a constituent of fire ant venom 100.⁵¹ In the case of 100 a mixture of cis/trans isomers was produced; the previously discussed carbamate synthesis of a 1,5-disubstituted pyrrolidine 75 provided only the trans isomer. Stereochemical studies have shown the

TABLE XII. Formation of a Metalated Allylurea and Reaction with Electrophiles

^a The lithium derivative was generated with *n*-BuLi in THF at -80 °C; after 1.5 h, MgBr₂·OEt₂ was added and the mixture was warmed until the precipitate was completely dissolved. The anion was recooled to -80 °C prior to the addition of the electrophile.

intermediate to be a π -anion which reacts with expected stereochemistry.⁵² For example, N-nitrosopiperidine upon metalation and substitution gives an axial product.⁵² It is notable that this is different from the equatorial substitution obtained with the piperidine amides (vide supra).

Two recent reports of the achievement of asymmetric induction in the addition of an α -lithionitrosamine to benzaldehyde in chiral media have appeared (Scheme XVIII). Seebach et al. reported the synthesis of halostanine (101) in 15% optical purity by the addition of 102 to benzaldehyde using (+)-2,3-dimethoxy-N,-N,N',N'-tetramethyl-1,4-butanediamine as a chiral media.⁵³ Soai and Mukaiyama have obtained an optical purity of 25% for the same reaction by employing (2S,2'S)-2-hydroxymethyl-1-[(1-methyl-2-pyrrolidinyl)methyl]pyrrolidine as the chiral media.⁵⁴

The synthesis of (+)-macrostomine (103) has been reported via the nitrosoamine as shown in Scheme XIX.⁵⁵ Metalation, and subsequent reaction with 3,4-(methylenedioxy)benzyl bromide, followed by denitrosation afforded 104, a key intermediate in the sequence, in 80% yield.

Reversibility of the regio- and stereochemistry of the addition of the alkyl α -metalloallyl nitrosamine 105 to aldehydes and ketones has been demonstrated as illustrated in Scheme XX. It is found that the α adduct 106 formed at low temperatures is converted to the γ adduct 107 at high temperatures. Initial formation of a mixture of three and erythro isomers from α addition

TABLE XIII.	Formation	of a l	V-(α-Lithiom	ethyl)carbamat	e and	Reaction	with	Electrophiles

reactant ^a	electrophile	product	yield, %	ref
	$ m CH_3I$	+ N - CH2CH3	71	33
	n-C ₈ H ₁₇ I	+о-с-Nснзсвн1,и	87	33
	$C_6H_5CH_2Br$		35	33
	(CH ₃) ₂ CHI		32	33
	n-C₅H ₁₁ CHO		80	33
			63	33
	C ₆ H ₅ CHO		50	33
	$(C_6H_5)_2CO$	$+ \underbrace{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array}}^{0} - c - N \underbrace{ \begin{array}{c} & & \\ &$	61	33

^a Metalated with sec-BuLi-TMEDA in THF at 0 °C.

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref
	LDA	-78, -40	THF	n-C₄H ₉ Br		62, 65	34a, 35
, in the second s	LDA	-78	THF	$(C_6H_5)_3\mathrm{CO}(\mathrm{CH}_2)_7\mathrm{I}$	CH=0-C-N	35	34a
СН30-С-N	LDA	-78	THF	n-C₄H ₉ Br	Сн ₃ 0 Сн ₃ 0 Сн ₃ 0	21	34a
/ C4H9- <i>n</i>	LDA	-40	THF	Br(CH ₂) ₃ CHBrCH ₃	Сн ₃ 0-СN	71	35
	LDA	-40	THF	Br(CH ₂) ₃ CHBr(CH ₂) ₂ - CH ₃	CH ₃ O CH ₁ O	78	35
о-с₅н ₁₁ —с−сн=сн- №	LDA	-78	THF	n-C₄H ₉ Br	л-С₅H ₁₁ С+==СHN_	58	34a
2	LDA	-78	THF	$I(CH_2)_6C(OCH_3)_3$	n-c5H11-C-CH=CH-N	74	34a
	LDA	-78	THF	I(CH ₂) ₇ OTHP	0-C5H11-C-CH=CH-N	43	34b
снзо-с-к Снгон	LiTMP (2 equiv)	-78	THF	Br(CH ₂) ₃ Cl	сн ₃₀ сн ₂ 0 сн ₂ он	48	121

of 105 to ald ehydes is also found to similarly revert to the three isomer and related cases have been reported. 46

The base-induced fragmentation of β -hydroxy nitro-soamines to give an aldehyde or ketone and a smaller

α-Metallo Amine Synthetic Equivalents

alkylnitrosoamine has been studied recently by Loeppky.^{56a} The reaction is found to be subject to control by the stereochemical orientation of the *N*-nitroso function; fragmentation for the *Z* isomer 108Z is much more rapid than for the *E* isomer 108E. Loeppky et al.^{56b} note that this is due to the greater stability of the incipient syn α -nitrosoamino carbanion and provide rate data to support a mechanism in which

the E isomer isomerizes to the Z isomer prior to fragmentation, as shown in Scheme XXI.

H. Isocyanides (Z = ==C)

Fifteen years ago, Schöllkopf and Gerhart discovered that methyl isocyanide can be metalated to give an

TABLE XV. Formation of N-(α -Lithio) Phosphoramides and Reactions with Electrophiles

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref
[(CH ₃) ₂ N] ₂ P N CH ₃	sec-BuLi	-78	DME	F.H°	[(CH ₃) ₂ N] ₂ P N CH	80	37e
	sec-BuLi	-78	DME			80	37e
	sec-BuLi	-78	DME	СНО		83	37e
	sec-BuLi	-78	DME	Сно		50	37e
[(CH3)2N]2-P-NCH3	n-BuLi	-78	THF	CH3I	$\begin{bmatrix} (CH_3)_2 N \end{bmatrix}_2 \xrightarrow{P} \xrightarrow{P} \xrightarrow{V} \xrightarrow{CH_3} \xrightarrow{V} \xrightarrow{0}$	100	37b
CH2C6H3	n-BuLi	-78	THF	CH3OCH2Cl	{(CH ₃) ₂ N] ₂ -P-N (CH ₃) ₂ N] ₂ -P-N	100	37b
	n-BuLi	-78	THF	(CH ₃) ₂ CHI	[(CH ₃) ₂ N] ₂ N_CCCCH ₃	80	37b
	n-BuLi	~78	THF	n-C₄H9I	[(CH ₃) ₂ N] ₂ P N CH ₃ [(CH ₃) ₂ N] ₂	80	37b
	n-BuLi	-78	THF	CH ₂ =CHCH ₂ Br	((CH ₃) ₂ N) ₂	80	37b
	n-BuLi	-78	THF	C ₆ H ₆ CH − NCH ₃ ⁴	CH ₂	46	37b
	n-BuLi	-78	THF	C ₆ H ₅ CH=NCH ₃ ^b	$\begin{bmatrix} (CH_3)_2 N \end{bmatrix}_2 \xrightarrow{P} N \xrightarrow{CH_3} CH_3$	40	37b
	n-BuLi	-78	THF	p-CH₃OC₀H₄CH = NCH₃ª	$(CH_3)_2N \longrightarrow CH_3$	49	37b
	n-BuLi	-78	THF	C ₆ H ₅ CH = NC ₆ H ₅ °	[(CH ₃) ₂ N] ₂ —P N CH ₃ CH ₃	80	37b
	n-BuLi	-78	THF	p-OCH ₃ C ₆ H ₄ CH==NC ₆ H ₅ °	$[(CH_3)_2N]_2 \xrightarrow{CH} P \xrightarrow{CH} C_6H_5$	92	37b
	n-BuLi	-78	THF	(C ₆ H ₅) ₂ CO	$H_{N-C_{6}H_{5}}$ $H_{CH_{3}}C_{6}H_{5}$ $H_{CH_{3}}C_{6}H_{5}$	86	37b
	n-BuLi	78	THF	p-CH ₃ C ₆ H ₄ COC ₆ H ₅	$[(CH_3)_2N]_2 - P - N - C(C_6H_5)_2$	82	37b
					HO — C ₆ H ₅ C ₆ H ₄ CH ₃ - <i>ρ</i>		

TABLE XV (Continued)

reactant	heee	temp °C	eolvent	electrophile	nroduct	vield %	ref
	- But:		TUF	СИСОСИ	product	40 50	97b 97o
	n-Dulh	-70	Inr	06115000113	CH3	45, 00	370, 370
					CHCeHa		
					сн _з	<u></u>	051
	n-BuLi	-/8	THE	$\langle \rangle$	CH3	60	37D
					C ₆ H ₅		
				$\langle _ \rangle$	<u> </u>		
	n-BuLi	-78	THF	0	ů ou	55	37b
				\sim	[(CH ₃) ₂ N] ₂ -P-N OH		
				\bigcup	СН		
					C ₆ H ₅		
	n-BuLi	-78	THF	CH3CHO	0 _сн.	76	37b
					[(CH ₃) ₂ N] ₂		
					CHC ₆ H ₅		
					¢нсн _з		
					он		_
	n-BuLi	-78	THF	C ₆ H ₅ CHO	Снз	89	37b
					[(CH ₃) ₂ N] ₂ P - N		
					CHC ₆ H ₅		
		-			о	~	
	n-BuLi	-78	THF	p-CIC ₆ H ₄ CHO	∬сн₃	87	37b
					[(CH ₃) ₂ N] ₂ PN CHC ₂ H ₂		
		70	THE		Óн o	00	07L
	n-BuLl	-78	THE	p-CH ₃ OC ₆ H ₄ CHO	CH3	83	370
					((CH3)2NJ2		
	n-BuLi	-78	тнг	с <u>сно</u>	0 Q	83	37h
	n-Dubi	10		(TY		00	010
				`o~	сн-сн-1		
					C ₆ H ₅		
	n-BuLi	-78	THF	д_сно	0 II cu	70	37b
					CH-CH-()		
					C ₆ H ₅		
	n-BuLi	-78	THF	S CHO	о ₋ сн _а он	81	37b
					[(CH3)2N]2		
		-		<u>^</u>	Ċ ₆ H5		
	n-BuLi	-78	THF	∆_сн₃	Снз	91	37b
					[(CH ₃) ₂ N] ₂ PN_ CHC ₆ H ₅		
0							
(CH3)2N CH3	n-BuLi	-78	тнг	CH_CHO	он Сн	78	37h
				01130110	O C 6Hs	10	010
					(CH ₃) ₂ N		
	- Dut:	70	mup		0 ⁻ \CH3	05	071
	n-BuLi	-18	1 mF	(Ung)gUUNU		60	37D
					(CH3)2N-P		
					0 с(сн ₃)3		
	<i>n-</i> BuLi	-78	THF	C ₆ H ₅ CHO		68	37b
					CeHa		
	n-BuLi	-78	THF	p-ClC ₆ H ₄ CHO	CH3 CH3	70	37Ъ
					06"4VI P		

TABLE XV (Continued)

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref
	n-BuLi	-78	THF	p-CH ₃ OC ₆ H ₄ CHO	CH3	39	37b
					C6H40CH3-p		
	n∞BuLi	-78	THF	$o-CH_3OC_6H_4CHO$		38	37b
					С ₆ Н ₄ ОСН ₃ -0		
	n-BuLi	-78	THF	$(C_6H_5)_2CO$		80	37 b
	.				CGH5		
	n-BuLi	-78	THF	p-CH ₃ C ₆ H ₄ COC ₆ H ₅	0 ∫ II № ∠ ^C 6H5	69	37b
					(CH ₃) ₂ N		
	n But i		ጥሀፑ	0	Сн ₄ Сн ₃ -р Сн ₄	41	97h
	n-Dull	-10	1111	\downarrow	0 C6H5	41	370
				\bigcup	CH3)2N-P		
	n-BuLi	-78	THF	△сн₃	СН3	85	37b
					(сн ₃) ₂ N-Р		
					С ₂ н ₅ 0 С ₆ н ₅ Он		
	n-BuLi	-78	THF	C ₆ H ₅ CH=NCH ₃ ^a		60	37b
					CeHs		
		70	THE	C H CH-NC H d	сн _з о	75	071
	n-BuLi	-70	Inr	C6n5Cn-NC6n5		15	370
					C2H50 CH-CHC6H5		
					^с ен ₅ и — сен ₅		
400 h at 50	oc book -	+ 70 0/1 001	at 90.90	do hat 20.80 cm - + +	H		
20 n at -00	U. 20 n a	i = 10 °C, °3 I	$a a - 20^{-1}$	$2 \text{ mat} = 30^{-1} \text{ C}$ and the			

 α -azo carbanionic intermediate 109 which reacts with a wide variety of electrophiles to give a number of useful adducts.⁵⁷ As shown in Scheme XXII, the product 110 can be hydrolyzed to substituted primary amines 111. Reaction of 109 with polar multiple bonds gives heterocycles 112. Several reviews of this chemistry have appeared and only a general outline and a summary of recent work will be given.⁵⁸

The organolithium 109 is a versatile α -lithiomethyl methylamine synthetic equivalent. Reaction of 109 with aldehydes or ketones, followed by alkaline workup gives 2-oxazolines while acidic workup provides 2-isocyano alcohols which can be hydrolyzed to the corresponding 1,2-amino alcohols. Addition of 109 to aryl carbonyl compounds provides methylenation while reaction with imines give dihydroimidazoles.^{58c} Addition of 109 to nitrones gives dihydroimidazolones 113 via 114 as shown in Scheme XXIII and Table XVIII.⁵⁹ Oxazoles can be obtained by reaction of 109 with acid chlorides, amides, or esters,⁶⁰ while 5-(alkylthio)thiazoles can be obtained by reaction with carbon disulfide.⁶¹ Addition of 109 to carbonates and chloroformates gave α -amino esters.⁶² Electrophilic substitution of 109 has also been reported with alkyl and allyl halides and epoxides. In addition 109 has been used in the synthesis of elipticine.63,64

Recent studies have focused on the chemistry of metalated isocyanides activated by the presence of carbonyl, nitrile, aryl, phosphonyl, or sulfonyl groups on the α -carbon. These species are of synthetic value and have been used in the synthesis of a wide variety of compounds including oxazoles,⁶⁵ imidazoles,⁵⁹ quinolines,⁶⁶ pyrroles,⁶⁷ α -isocyano phosphates,⁶⁸ and 2-isocyanoacrylates.⁶⁹ Thiazoline derivatives produced from α -isocyano acetate esters have been converted to β lactones.⁷⁰

An activated isocyanide which has been remarkably useful is tosylmethyl isocyanide (115), known as TosM-IC. Van Leusen and co-workers have demonstrated that olefinic ketones, esters, and nitriles are subject to attack by metalated tosylmethyl isocyanide to afford substituted pyrroles by processes analogous to the formation of 111 from 109. The TosMIC anion can be mono- or dialkylated and this intermediate also adds to isothiocyanates to yield thiazoles. Dilithiated TosMIC affords imidazoles.⁷¹ Although TosMIC has been widely used in the conversion of ketones to nitriles or α -hydroxy aldehydes,⁷² perhaps its most general application has been as an acyl dianion equivalent. Symmetrical and unsymmetrical ketones can be readily synthesized using the TosMIC anion by this approach in yields ranging from 40 to 80%.⁷³

Alkenyl isocyanides 116 have been metalated at the α -vinyl carbon by alkyllithium to afford the α -azo carbanionic intermediate 117 which reacts with alkyl halides and carbonyl compounds to yield 118 as shown in Scheme XXIV and Table XIX.⁷⁴

Primary alkyl isocyanides 119 can be substituted to give 120 in low yields if the lithiation can be carried out in the presence of an electrophile.^{60,63} With the ex-

TABLE XVI. Formation of 1-Substituted-2-[bis(dimethylamino)phosphinoyl]tetrahydroisoquinolines

reactant ^a	electrophile	product	yield, ^b %	ref
N-P-[N(CH3)2]2	D_2O	N-P-(N(CH ₃) ₂) ₂	>95	38, 119
	CH ₈ I		89, 66	38, 119
	n-C₄H9Cl		>95, 86	38, 119
	(CH ₃) ₂ CHI		86, 78	38, 119
			52	38
	Ļ		35	119
	(CH ₃) ₃ CCH ₂ Br		60, 39	38, 119
	CH ₂ -CHCH ₂ Cl	$(H_2 \cup (U_{3})_3)$	>95, 87	38, 119
	C ₆ H ₅ CH ₂ Cl	$(H_2CH = CH_2)$	>95, 91	38, 119
	CH2Br		63	38
	C₂H₅CHO	С	>95	38
	(CH ₃) ₃ CCHO	$C_{2H_{5}}$	90	38
	C ₆ H ₅ CHO		81	38
	CHO CHO		>95	38
	Å	$ \begin{array}{c} \begin{array}{c} & & \\$	64, 73	38, 119

	electrophile	nroduct	wield b %	rof
reactant	(C ₆ H ₅) ₂ CO		>95, 74	38, 119
	<u>А</u> сн _з		>95	38
	Å		>95	38
	\bigcirc	OH 0H		
	Cr(CO)3	N_P_[N(CH ₃) ₂] ₂	57, 45	38, 119
	I ₂		66	38
			25	110
	D_2O	N P [N(CH ₃) ₂] ₂	65	119
•	CH₃I	N_P_[N(CH ₃) ₂] ₂	56, 19	38, 119
	C ₆ H ₅ CH ₂ Cl	$ \begin{array}{c} CH_3 \\ \hline \\ $	>95, 40	38, 119
		CH3 CH2C6H5		

 $^{\circ}2$ -[Bis(dimethylamino)phosphinoyl-1-lithiotetrahydroisoquinolines were generated by the action of *n*-BuLi in THF at -78 °C. $^{\circ}$ Yields were determined spectroscopically by NMR from nonpurified crude materials.

SCHEME XXII

SCHEME XXIII

ception of cyclopropyl and cyclobutyl isocyanides,^{63,75} secondary alkyl isocyanides do not metalate efficiently. However, the product of lithiation of cyclopropyl isocyanide provides an organolithium reagent 121 which is useful in the synthesis of cyclobutanones. Reaction of 121 with carbonyl compounds gives 2-oxazoline-4SCHEME XXIV

SCHEME XXV

spirocyclopropanes 122 which can be hydrolyzed and rearranged to cyclobutanones 123 as shown in Scheme XXV and Table XX.⁷⁶

Walborsky and Periasamy have found that isocyanocyclopropyl carbanions are configurationally stable at low temperatures which is interpretable as evidence for dipole stabilization.⁷⁷

The terminally disubstituted isocyanides of the simple alkanes provide interesting organolithium reagents.

 α -Metallo Amine Synthetic Equivalents

amine	electrophile	substituted phosphoramide	producta	yield, %	ref
П М-н	CH₃I		СТОР-н	54, 61	38, 119
	n-C ₄ H ₉ Cl		CH3	63, 72	38, 119
	(CH ₃) ₂ CHI	C4H9-7	С ₄ н ₉ -л	61, 65	38, 119
	C ₆ H ₅ CH ₂ Cl			60, 69	38, 119
	(CH ₃) ₃ CCH ₂ Br	CH2C6H5		29	119
	CH2-CHCH2Cl	$ \begin{array}{c} $	с́н ₂ с(сн ₃)3	65	119
	Ĭ	$ \begin{array}{c} \downarrow H_2CH=CH_2 \\ & \qquad \qquad$		23	119
	$(C_{\theta}H_{\delta})_{2}CO$		С N-н	38	119
				36	119

N(CH2)2]2

N(CH3)2]2

CH,C_H

^a Hydrolysis conditions: aqueous methanolic hydrochloric acid (1.0-5.0 M) at reflux.

CH₃I

C₆H₅CH₂Cl

Reaction of ethylene diisocyanide (124) with *n*-butyllithium at -100 °C is reported to provide the unusual dilithiated species 125 which adds to aldehydes and ketones to provide 126.^{60b} At -70 °C, the corresponding propane derivative 127 gives a monolithio intermediate 128, which cyclizes to 129 and on addition of an aldehyde or ketone provides 130. The terminally diisocyano-substituted butane can be lithiated to give either the mono- or dilithiated species 131 or 132, respectively, as shown in Scheme XXVI and Table XXI.^{60b}

36, 14

36

38, 119

119

A potential competing reaction in the metalation of isocyanides is nucleophilic addition to carbon. Indeed, if the α -azo carbon is trisubstituted, addition of an organolithium reagent occurs exclusively to produce the α -lithiated aldimine 133 which can be reacted with various electrophiles and subsequently hydrolyzed to afford a substituted ketone 134.⁷⁸ Thus 133 is an acyl anion equivalent as shown in Scheme XXVII.

I. Formamidines (Z = CH(==NR))

In the last two years the formamidine group has emerged as a potent group for activation of a carbon-

TABLE XVIII. Formation of N-(α -Lithio) Isocyanides and Reactions with Electrophiles

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref
CH₃NC	n-BuLi	-60 to -70	THF	н_с=т с ₆ н ₅ сн ₃	нснъ	22	59
	n-BuLi	-60 to -70	THF	С_= ⁰ сн ₃	сена н—ң Ци—сна	20	59
	n-BuLi	-60 to -70	THF		H-N-C6H3	46	59
	n-BuLi	-60 to -70	THF	H CeHs CH2C6H5	H-N-CH ₂ C ₆ H ₅	50	59
	n-BuLi	60 to -70	THF	С. 6H5 С. 6H5 С. H5 С. H3	н	45	59
	n-BuLi (2 equiv)	-78	THF	CH₃I		52	60
\sim	n-BuLi (2 equiv)	-78	THF	$C_6H_5CH_2Br$		64	60
	n-BuLi (2 equiv)	-78	THF	C ₈ H ₅ CHO		47	60
	n-BuLi (2 equiv)	-78	THF	(C ₆ H ₅) ₂ CO	Tos N C C 6H5 (CH2)2 C 6H5 H - N - Tos	49	60

SCHEME XXVII

hydrogen bond adjacent to nitrogen in the sequence of Scheme II. Meyers et al. initially found that the N,Ndimethylformamidines 135 can be metalated with *sec*butyl- or *tert*-butyllithium to afford the α -azo carbanion 136 shown in Scheme XXVIII. This dipole-stabilized organolithium reagent reacts with alkyl halides, ketones, and aldehydes to provide the substituted amidines 137. A particular advantage of formamidines for this methodology is the facile cleavage of the activating group. Hydrolysis with acidic aqueous methanol provides the secondary amines 61 while hydride reduction gives an N-methyl tertiary amine.⁷⁹ Overall yields of substituted amines range from 40 to 77% as shown in Table XXII. Formamidines derived from phenylmethylamine were also metalated and found to react with alkyl iodides to give formamidines 138, a result which suggests the utility of this approach for unsymmetrical systems.⁸⁰

An important feature of the formamidine group is that it is sufficiently activating to allow lithiation at secondary centers. The pyrrolidine formamidine has been converted via 139 to the β -hydroxy amine 140 by the sequence of lithiation, addition to benzaldehyde, and hydrolysis.⁷⁹ Analogously, the formamidines of tetrahydroquinoline and indoline have been metalated

FABLE XIX. Formation o	f N-(α-Lithioalkeny) Isoc	yanides and	l React	ions with	l Electroj	philes
-------------------------------	-------	----------------	--------	-------------	---------	-----------	------------	--------

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref
	n-BuLi	-70	THF	ClSi(CH ₃) ₃		53	74
	n-BuLi	-70	THF	CH₃I		75	74
	n-BuLi	-70	THF	$ClCO_2C_2H_5$		ca. 70ª	74
	n-BuLi	-70	THF	C ₆ H ₅ COCl		ca. 94ª	74
	n-BuLi	-70	THF	CO ₂ , H ⁺		ca. 95 ^a	74
	n-BuLi	-78	THF	(CH ₃) ₂ CO	ОН С(СН ₃)2	77	74
					Hun Com CH3		
	n-BuLi	-78	THF	C ₆ H ₅ CHO	N N N	36	74
	DIT	70		(0.11.) 00	H w C G H S C G H S C G H S		
	n-BuLi	-78	THF	(C ₆ H ₅) ₂ CO	C(C ₆ H ₅) ₂		74
					Hunchers CeHs CeHs		
	n-BuLi	-78	THF	ClSi(CH ₃) ₃	CH3 C6H5 SI(CH3)3	78	74
	n-BuLi	-78	THF	ClSi(CH ₃) ₃	C C Si(CH ₃) ₃	53	74

^a Yield was determined spectroscopically by NMR from nonpurified crude material.

SCHEME XXIX

SCHEME XXX

to provide 141 and 142, respectively. Subsequent reaction of these organolithium reagents with alkyl iodides and benzaldehyde give substituted products in useful yields (Table XXII).⁸⁰

Formamidines derived from tetrahydrocarboline and tetrahydroisoquinoline also can be lithiated to afford 143 and 144, respectively, which undergo electrophilic substitution at the activated methylene position to give the expected products in 52–67% yields as shown in Table XXIII.⁸¹ The metalated formamidine 143 has been successfully used in the synthesis of indole alkaloid derivatives as illustrated in Scheme XXIX for the indolo[2,3-a]quinolizidine 145 and the yohimbane indole skeleton 146.⁸² Both syntheses illustrate a general strategy for alkaloid syntheses in which the originally activating nitrogen can participate in a nucleophilic cyclization following removal of the activating group.^{35,39}

Recent work establishes that formamidines are exceptionally useful as α -lithio amine synthetic equivalents for asymmetric induction. Thus, the formation

TABLE XX. Formation of N-(α -Lithiocyclopropy) Isocyanides and Reactions with Electrophiles

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref
∧_Nc	n-BuLi	-70	THF	C ₆ H₅CHO	N Cells	89	76
	n-BuLi	-70	THF	СНО		75	76
	<i>n</i> -BuLi	-70	THF	CH0		62	76
	n-BuLi	-70	THF	Сно Сно		78	76
	n-BuLi	-70	THF	сн₃—С—√	N Снз	89	76
	n-BuLi	-70	THF	$(C_{6}H_{5})_{2}CO$		61	76
C ₆ H ₅ NC	n-BuLi	-70	THF	C ₆H₅CHO	N 0 C6H5	35	76
	n-BuLi	-70	THF	СНО		90ª	76
	n-BuLi	-70	THF	CHO		40	76
	n-BuLi	-70	THF	C ₆ H ₅ COCH ₃		85ª	76

^a Yield was determined spectroscopically by NMR from nonpurified crude material.

of 144 (R = 1(S), 2(S)-(+)-1-phenyl-2-amino-1,3-bis-(trimethylsiloxy)-2-propyl) from 147 with lithium diisopropylamide when followed by addition to alkyl halides and hydrolysis gives chiral 1-substituted tetra-

SCHEME XXXII

156

 $CH_3N = C(C_6H_5)_2 \xrightarrow{RLi} LiCH_2N = C(C_6H_5)_2 \xrightarrow{E} ECH_2N = C(C_6H_5)_2$

hydroquinolines 148 in yields of 65–68% with enantiomeric excesses of the S configuration greater than 90% as shown in Scheme XXX and Table XXIV.⁸³ This sequence has been used to prepare the benzoquinolizine 149 in 70% yield and 90% enantiomeric excess. The chiral amine is regenerated upon hydrolysis.

The lithiated formamidine 136 is useful in a variety of syntheses. Reaction with trimethylsilyl chloride gives 150 which on lithiation and addition to carbonyl compounds provides the enamidine 151 as shown in Scheme XXXI. This species in turn can be reduced to an amine 152, subjected to further metalation and electrophilic substitution to the enamine 153, or hydrolyzed to the aldehyde 154.⁸⁴ The enamine 153 can be hyTABLE XXI. Formation of Mono- and Di-N-(a-Lithioalkyl) Isocyanides and Reactions with Electrophiles

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref
CN(CH ₂) ₂ NC	n-BuLi (2 equiv)	-100	THF	(CH ₃) ₂ CO		80	60b
	n-BuLi (2 equiv)	-100	THF	₿ #b	J. J.	68	60b
	n-BuLi (2 equiv)	-100	THF	$(C_6H_5)_2CO$		78	60b
CN(CH ₂) ₃ NC	n-BuLi	-70	THF	(CH ₃) ₂ CO	N N N CH3	68	60b
	n-BuLi	-70	THF	∯ #f		46	60b
	n-BuLi	-70	THF	 (C ₆ H ₆) ₂ CO	ОН С(С ₆ Н ₅) ₂	76	60b
					N CeH5		
	n-BuLi	-70	THF	ClSi(CH ₃) ₃	(CH3)3SI NC	67	60b
	n-BuLi	-70	THF	Снз	CH3	30	60b
CN(CH₂)₄NC	n-BuLi	-100	THF	C ₆ H ₅ CH ₂ Br		78	60b
	n-BuLi	-100	THF	$C_{\theta}H_{5}CON(C_{2}H_{5})_{2}$		66	60b
	n-BuLi	-100	THF	$(C_{\theta}H_{\delta})_{2}CO$	сн (сн ₂ /з санз Он С(С ₆ Н ₅) ₂	64	60b
					CN-(CH ₂) ₃ -C ₆ H ₅ C ₆ H ₅		
	n-BuLi	-100	THF	(CH ₃) ₂ CO	он С(Сн ₃) ₂ 	40	60b
					CN-(CH ₂) ₃		
	n-BuLi (2 equiv)	-100	THF	$C_6H_5CH_2Br$		83	60b
	n-BuLi (2 equiv)	-100	THF	$C_6H_5CON(C_2H_5)_2$		47	60b

drolyzed to the carbonyl derivative 155 while reduction to an amine should also be possible. Specific uses of this approach for aminomethylation and reductive acylation are illustrated for cyclohexanone at the bottom of Scheme XXXI. Related results are compiled in Table XXV.

The lithiation of formamidines bearing additional activation due to ester substitution at the α -carbon provides an enolate which reacts with alkyl and allyl halides to afford substituted amino acids in useful yields. Subsequent hydrolysis to provide substituted products in 60–80% yields have been reported (See Addendum).⁸⁵

J. Imines $(Z = CR_2)$

Aldimines and ketimines from methylamine or

amines bearing additional electron-withdrawing substituents in the α -positions have been shown to metalate readily to give α -aminoallylic carbanionic species.⁸⁶ For example, Kauffmann's demonstration that the methylimine of benzophenone 156 can be metalated to give 157 has led to investigation of the addition of 157 to alkyl halides, ketones, and aldehydes, to give 158 as shown in Scheme XXXII.^{87,88} Subsequent hydrolysis to an electrophilically substituted methylamine 159 is achieved by heating in aqueous acid in yields of 17–70% as shown in Table XXVI.⁸⁷ The anion 157 also reacts with cycloheptatriene to give the [6 + 4] cycloaddition product 160 in 47% yield.⁸⁹ The anion 161 derived from the metalation of benzylidenebenzylamine 162 reacts analogously with alkyl halides, ketones, alkenes, carbon dioxide, and isocyanates to give substituted products

TABLE XXII. a-Substituted Amines via Dipole-Stabilized Carbanions from Formamidines

reactant	electrophile	α-substituted formamidine	yield, %	α -substituted amine	yield, %	ref
	CH3I	\bigcirc	85	,,,,,,		79
	n-C ₃ H ₇ I		82			79
	CH_3I (sequence repeated)	H-C-N-CH2CH3	88			79
	Ļ			CH2-N-CH3	45 ^b	79
	C&H&CHO			он с ₆ н ₅ —сн—сн ₂ — N—сн ₃ н	776	79
	C ₆ H ₅ COCH ₃			ОН СH2СH3 СH2СH3 СH3 СH3 СH3 СH3	64 ⁶	79
	C ₈ H ₈ COCH ₃			С6H5СH2NСH3 СH3СH2NСH3 СH3СH3СH3СH3СH3СH3СH3	67°	79
	n-C ₆ H₁₃CHO	СH ₃		OH ↓ л-C ₆ H ₁₃ CHCH ₂ NCH ₃ ↓	40 ⁶	79
	C ₆ H ₅ CHO			Ч Он Сн С ₆ н ₅	57 ⁶	79
Сеня- л Н — С — N СН3	C ₆ H ₅ CH ₂ Br	СаНэ-л Н — С — N (СН ₂) ₂ С6Н5 сн ₃		С ₆ н ₅ (Сн ₂) ₂ NСН ₃ Н	54 [¢]	79
	C ªH ²CHO	н-с-N-сн3		он с ₆ н ₅ снсн ₂ — N— Сн ₃ Н	716	79
С(СН ₃)3 Н-С-N СН3				CH2-N-CH3	40 ⁶	79

TABLE XXII (Continued)

reactant ^a	electrophile	α -substituted formamidine	yield, %	α -substituted amine	yield, %	ref
	C _€ H₅CHO	С(СН ₃)3 ОН СНС6Н5 СН2		он с ₆ н ₅ снсн ₂ — м—сн ₃	76 ⁶	79
ç(сн _з) _з	CH₃I	нс	90	Ĥ		80
н-С-исна						
	n-C₄H ₉ I	C(CH ₃) ₃ H-C-N C-H ₂		СН3—(СН2)4—N—С6Н5 Н	68ª	80
H-C-N	C₂H₅I			C ₂ H ₅	66 *	80
	C ₆ H ₅ CHO	H-C-N		СНС ₆ Н ₅	73 *	80
	CH3I	H-C-N	83			80
HCN	CH₃I	H-C-N		CH3	65 "	80
	n-C₄H₀I	C(CH3)3 HCN	84			80
	C ₆ H ₆ CHO	С(СН ₃)3 ОН СНС6Н5		OH H H H	64 ^e	80
H-C-N	CH₃I		63, [/] 73 [#]	Сн _а	87, ^h 85 ^b	126
	n-C₄H9Br		75'	√N H C₄H9- <i>n</i>	70 ⁴	126
	CH2=CHCH2Br		3040	CH2CH=CH2	80 ⁶	126
	$BrCH_2C_6H_5$	н — с — м — с н ₂ сен ₅	20–30	H CH2CeH5	90 ⁶	126
	СН₂━СНСНО		62	CHCH=CH2	61°	126

TABLE XXII (Continued)

reactant ^a	electrophile	α-substituted formamidine	yield, %	α -substituted amine	yield, %	ref
	C ₆ H₅CHO	+ ⁰ н сн—с ₆ н₅ н_сх	74	Сн_с _б н₅	89°	126
	CICO ₂ CH ₃	+ со _б сн ³	85			126
	$(C_6H_5Se)_2$	+ seC6H5	70			126
	$(n-\mathrm{C_4H_9})_3\mathrm{SnCl}$	+ Sn[C4H9-7/]3	95			126
	n-C ₇ H ₁₅ Br	+ _{с7} н₁5`л	78			126
H-C-N	BrC_2H_5	H-C-N H-C-N	80	H ₅ C ₂ N C ₇ H ₁₅ - n	87 ^h	126
+ N H - C - N	CH₃I	+ cH ₃ H - c - N	18, 81 [#]			126
	n-C₃H ₇ I	+ C3H7-7	<5, 80"	С ₃ н ₇ -л	83 ^b	126
	n-C₄H9I	+ C ₄ H ₉ - <i>n</i> HC-N	13, 81 ^g	М С₄Нg-л	92 ⁶	126
	CH2=CHCH2Br		30, 81 ^g	H CH2CH=CH2	85 ^b	126
	C ₆ H ₅ CH ₂ Br	+ CH ₂ C ₆ H ₅	20, 55 ^g	н Сн ₂ с ₆ н ₅	87 ⁶	126
	$(C_6H_5Se)_2$	+ SеС ₆ н ₅	90	Ĥ		126
	ClCO ₂ CH ₃	+ co₂CH₃	87			126
	C ₆ H₅CHO		93	ОН	77°	126
	Br(CH ₂) ₃ Cl	H = C = N $H = C = N$ $H = C = N$	0, 76 #	н		126
H-C-N	CH₃I	+ - c - N		сн3 К с3Н7-л	718	126
+ ∥ ⋈—c—⋈ <u>→</u> +	CH₃I	н_с_N н_сс_N сссснз)3		C(CH3)3	50–70°	126

TABLE XXII (Continued)

reactanta	electrophile	α -substituted formamidine	yield, %	α -substituted amine	yield, %	ref
+ N H→C→N, →−СH(С6H5)2	CH3I			CH(C6H5)2	50–70°	126
	CO ₂ , H ⁺	H - C - N - CH(C ₆ H ₅) ₂				126
н-с-N-с(сн _з)з	CH₃I	H - C - N - C(CH3)3				126
+ = = = = =	n-C ₃ H ₇ I	Сн ₃ + С ₃ н ₇ - <i>п</i> н — С — N	79	н С с зн7 - л		126
\bigcirc	n-C ₇ H ₁₅ I		80	М С ₇ н ₁₅ -∥		126
	$(C_6H_5Se)_2$		81	H		126
	ClCO ₂ CH ₃		91			126
	CH₃I	н-с-м_с-к,		CH3	58 ^h	126
	n-C₄H₃Br	+ - C ₄ H ₉ - <i>n</i> + H - C - N			60 ^h	126
	C ₆ H ₅ CH ₂ Cl	+ + сн ₂ С ₆ н ₅ н-с-N-сн ₂ С ₆ н ₅ + н-с-N		H CH2C6H5	63 ^h	126
	C ₆ H₅CHO				66 ^h	126
	Ţ				40 ^h	126
	n-C ₃ H ₇ CHO	+ N − с − N − сзн ₇ -л		н он сн—с ₃ н ₇ -л	71 ^k	126

^a Metalation was accomplished quantitatively by t-BuLi in THF at -78 °C; the anion was allowed to warm to -25 °C for 1 h prior to the addition of the electrophile. ^b Hydrolyzed with KOH (5 equiv) in CH_3OH/H_2O (2:1) at reflux for 18 h. ^c Product after treating the N-formyl derivative with LiAlH₄. ^d Hydrolyzed with HCl/H₂O/CH₃OH. ^e Hydrolysis conditions not specified. ^f HMPA added prior to electrophile. ^b Hydrolyzed with NH₂NH₂.

163 in yields ranging from 20 to 92%.^{87,88,90} Similar α -azoallylic anions are involved in the isomerization of

164 from cis, cis-bis(benzaldimines) to the thermodynamically favored trans, trans isomer in greater than 90% yields, upon treatment with potassium *tert*-butoxide.⁹¹

The anion 157 has also been useful for the synthesis of enamines. Activation towards further metalation is achieved by conversion to the phosphonyl derivative 165 which undergoes lithiation and addition to benzophenone or benzaldehyde to give 166 and 167 in 92 and 56% yields, respectively. Hydrolysis of these imines provides the enamines 168 shown in Scheme XXXIII.92 Related imine derivatives in which dominant activation for carbanion formation is provided by an adjacent carbonyl group have been useful in the synthesis of penicillin⁹³ and amino acid⁹⁴ derivatives. In addition, imino derivatives of lithiodithiocarbonates undergo facile metalation to 169 and subsequent substitution occurs adjacent to the activating group.93 The sulfonate derivatives 170 and 171 have also been shown to react similarly.94

Finally, (1-phenyl-1,2-diazaallyl)lithium 172 has been generated and allowed to react with aldehydes and ketones to yield α -hydroxy aldehyde phenylhydrazones as shown in Scheme XXXIV.⁹⁵

K. Isothiocyanates (Z = C = S)

Methyl isothiocyanate has been reported to give the imidazoline derivative 173 under metalation conditions. The formation of 173 can occur via addition of the transient α -metallo isothiocyanate 174 to methyl isothiocyanate. Indeed 174 can be generated from the trimethylsilyl derivative of methyl isothiocyanate and trapped in situ by carbonyl electrophiles to give oxa-

TABLE XXIII. α -Substituted Amines via α -Amino Carbanions from Formamidines

reactant	metalation conditions ^a	electrophile	α-substituted formamidine	yield, %	α -substituted amine	yield, ^b %	ref
	Α	$C_6H_5CH_2Br$	\bigcirc			52°	81
					CH ₂ C ₆ H ₅		
	A	CH2CI OCH3			CH ₂ CH ₂ OCH ₃	52°	81
	Α	CHO UCH3				53°	81
	Α	ClCO ₂ C ₂ H ₅			CO2C2H5	62 ^d	81
H-C-N	A	C ₆ H ₅ CH ₂ CH ₂ Br			СН ₂ -С ₆ Н ₅	61°	81
	A	Br(CH ₂) ₄ Cl	C(CH ₃) ₃			71 ^f	81
	A		(CH ₂) ₄ Cl			67°	81
H-CC(CH3)3 OCH3	A	CH₃I	HC-N-CH2OH CH2OH		CH3	52°	81
H-C-N-CH ₂ C ₆ H ₅	Α	CH₃I	H-C-N-CH3		N-H CH3CH2C6H5	53/	81
	В	CH₃I	H-CH3 CH2 CH3 CH2 CH3	84	CH2 CH3	68°	82

508 Chemical Reviews, 1984, Vol. 84, No. 5

TABLE XXIII. (Continued)

reactant	metalation conditions ^a	electrophile	α -substituted formamidine	yield, %	α -substituted amine	yield, ^b %	ref
	В	CH₃I		84		778	82
	В	(CH ₃) ₂ CHCH ₂ I		87		91°	82
	В	(CH ₃) ₂ CHCH ₂ I	CH3 CH3 CH3 CH3	87		78 ^h	82
			H = C = N + C + C + C + C + C + C + C + C + C +		H CH ₂ CH(CH ₃) ₂		
	В	C ₆ H₅CHO		89			82
	В	Cl(CH₂)₄Br	H-C-N-CH3 (CH2)4 CH2OCH3		CH2 CH2 CH3	68°	82
	В	Cl(CH ₂) ₄ Br				77 ^h	82
	В	CH ₂ CI CO ₂ C ₂ H ₅ OCH ₃	CICH ₃) ₃ H C N CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ OCH ₃ CO ₂ C ₂ H ₅ OCH ₃	89	CH ₂ OCH ₃ OCH ₃ OCH ₃	83°	82
	В	CH ₂ Cl CH ₂ Cl CCH ₃ CCH ₃	$(CH_3)_3$ $(CH_3)_3$ $(CH_2)_2 CH_2 CH_2 CH_3$ $(CH_2)_2 CH_2 CH_3$ $(CH_3)_3$ $(CH_2)_2 CH_3$ $(CH_3)_3$ $(CH_3)_3$	89	H C CCH3	75 ⁱ	82

^aA = LDA in THF at -78 °C for 2-3 h or sec-BuLi in THF at -78 °C for ~45 min; B = t-BuLi in THF at -25 °C for ~45 min (the electrophile was added at -78 °C). ^bCleavage conditions: °95% NH₂NH₂/CH₃CO₂H/C₂H₅OH (aq) (1:1.6:10) at 53 °C overnight. ^dAl-Hg reagent described by A. I. Meyers and J. R. Durandetta, J. Org. Chem., 40, 2021 (1975). °10% KOH/CH₃OH (1:1) heated to reflux for 24 h. ^fLiAlH₄ (3 equiv Li) in THF at reflux for 16 h. ^dStirred for 15 min with 3 N HCl, neutralized to pH 10 with NaOH, stirred for 1 h at 25 °C. ^hHeated at 60-65 °C for 1 h in 3 N HCl/THF (1:1), neutralized to pH > 11, two layers stirred overnight. ⁱSame conditions as in h except heating was continued for 5.5 h.

zoline-2-thiones 175a in 25–75% yield as summarized in Scheme XXXV and Table XXVII.⁹⁶ Derivatives in which stabilization for a carbanion is provided by ad-

ditional substitution, shown as 176, have been used to produce 175b, dialkyl- α -isothiocyanoacrylates, 177, and substituted esters.^{97,98}

TABLE XXIV.	Asymmetric Alk	ylations of Chirs	l α-Amino Ca	rbanions from	Formamidines

reactant	metalation conditions ^a	electrophile	α -substituted chiral amine	chemical yield, ^b %	ee, %	configuration	ref
H''',,,,CH3	A	CH3I		85	10	R	83
	A	(CH ₃) ₂ CHCH ₂ Br		84	27	R	83
	A	n-C₄H ₉ Br		93	19	R	83
	A	C ₆ H ₅ CH ₂ Br		97	35	R	83
	A	C ₆ H ₅ CH ₂ CH ₂ Br	CH ₂ C ₆ H ₅	89	52	S	83
SIGH ₃) ₃ $C_{e}H_{5}$ H_{1} H_{1} H_{2} H_{2} H_{3} H	A,B	CH₃I		80, 79	80, >99	S	83
H-C-N	В	(CH ₃) ₂ CHCH ₂ Br		85	91	S	83
	В	n-C ₄ H ₉ Br		80	91	S	83
	В	C ₆ H ₅ CH ₂ Br		70	93	S	83
	В	$C_6H_{\delta}(CH_2)_2Br$	CH ₂ C ₆ H ₅	65	>99	S	83
	В	Br(CH ₂) ₄ Cl	(CH ₂) ₂ C ₆ H ₅	70-	90	S	83
(CH ₃) ₂ CH-CH2OSI(CH ₃) ₃	В	CH3I		52	88	S	125
н-С-N, (СН ₃) ₂ СН-СН-СН ₂ ОSI(СН ₃) ₂ СІСН ₃) ₃	В	CH₃I	CH3	74	75	S	124
(CH ₃) ₂ CH-CH_CH ₂ OS(C ₂ H ₅) ₃	в	CH3I	СН3	70	74	S	124
	В	CH3I	ён _з	9 0	86	S	124
	В	CH3I	Сна	46 ^d	84	S	124
	В	CH3I		73	93	R	124
			CH3				

TABLE XXIV (Continued)

reactant	metalation conditions ^a	electrophile	α -substituted chiral amine	chemical yield, ^b %	ee, %	configuration	ref
°↓ ⁰ ↓ ¹ / _m , _{Ce} H ₅	В	CH3I	CH3	77	12	R	124
H-C-N H'/,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	В	CH₃I	Снз	74	39	R	124
(5) CH ₃ -CH-CH ₂ OSi(CH ₃) ₃	В	CH ³ I	CH ₃	60	50	S	124
	В	CH3I	СН3	71	93	S	124
CH ₃ ·/ _{//} (S) H N H CH ₂ ·/ _{//} (S) CH ₂ -OSI(CH ₃) ₃	В	CH3I	Сн3	71	90	S	124

 $^{a}A = LDA$ in THF at -78 °C; B = LDA in THF at -78 °C, electrophile added at -100 °C. ^bHydrazinolysis was accomplished by treatment of formamidine with hydrazine/acetic acid. ^cCatalyzed during hydrazinolysis. ^dLow yield due to methoxy elimination during the metalation step.

The organolithium reagent 179 reacts with allyl halides

Interesting examples of the formation of an α -azo

TABLE XXV. Homologation of Carbonyls to Amines, Aldehydes, and Ketones via Dipole-Stabilized Carbanions from Formamidines

reactant	metalation conditions ^a	electrophile	enamidine	product	yield, %	ref
Q(CH3)3	Α	C ₆ H ₅ CHO	C(CH ₃) ₃	С ₆ H ₅ —(CH ₂) ₂ —N—CH ₃	66 ^b	84
H-C-N CH ₂ -Si(CH ₃) ₃	А	снз с _е н ₅ сноно	$H = \begin{pmatrix} N & H \\ -N & C = C & H_{3} \\ H & C + J \\ & H \\ & H \\ & H \\ & H \\ & C = C & C + C_{6} H_{5} \\ \end{pmatrix}$	^с н ₃ с _{ен₅сн—(сн₂)₂— №—сн₃}	61 ^{<i>b</i>}	84
	А	C ₆ H₅CH ≕ CHCHO	$H = \frac{1}{1000} - \frac{1}{1000} + \frac{1}{10000000000000000000000000000000000$	Ч С ₆ Н₅СН==СН(СН ₂) ₂ —№СН ₃ 	52 ^b	84
	A	CN-COCH3		CH-CH2-N-CH3 CH3 H	70 ⁶	84
	A	(C ₆ H ₅) ₂ CO	$H = CC_{CH_3}$	(C ₆ H ₅) ₂ CHCH ₂ —N—CH ₃ H	65 ^{<i>b</i>}	84
	Α		H-C(CH3)3	$(C_{6}H_{6})_{2}CHCHO$	84° 66 ⁵	84 84
			દેમ ₃	сно	60 ^c	84
	Α	CH30 CH3	H-CH3/3 C(CH3/3) C(CH3/3) C(CH3/2) C(CH3) C(сн ₃ о (СН ₂)2 Н СН3	67 ⁶	84
			сн _з	CH30 CH2 CH2	55°	84
	A	СНО	H-C(CH ₃) ₃	СН2СНО	72°	84
	Α	Ļ		СНО	62°	84
	В	n-C₄H _θ I	$H = C = C = C + H_3$	CH ₃ (CH ₂) ₄ —C—(CH ₂) ₃ CH ₃	71°	84
H-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	В	n-C₄H ₉ I	н-с, с.	C-(CH ⁵) ² CH ²	64°	84
сн3	В	C ₂ H ₆ CHO	сн-с ₂ М5 н-с		50°	84

TABLE XXV (Continued)

 $^{a}A = n$ -BuLi in THF at -78 °C; B = t-BuLi in THF at -78 °C. ^b The formamidine was treated with NaBH₄ in ethanol at -10 °C while maintaining the pH at 6; the aminal thus produced was hydrolyzed with dilute acid. ^cHydrazinolysis with hydrazine or dimethyl-hydrazine/acetic acid/ethanol/water followed by treatment with aqueous Cu(OAc)₂ gave the aldehyde or ketone.

to give the corresponding α -substituted amines 180 in moderate yields after acidic hydrolysis as shown in Table XXVIII. If this reaction has an appreciable scope it could be a very useful approach to α -lithio amine synthetic equivalents.

M. Amine Oxides ($Z = -0^{-}$)

Pyridine N-oxides are well known to undergo lithiation to give dipole-stabilized carbanions which are subject to electrophilic substitutions. In conjunction with deoxygenation this approach could provide a useful synthesis of 2-substituted pyridines. The area has been reviewed.^{5,100}

Metalation of an sp³ carbon stabilized by an N-oxide moiety has been reported for quinuclidine N-oxide.¹⁰¹ Lithiation with *tert*-butyllithium to give 181 followed by reaction with D₂O, aldehydes, and esters gives 182 which can be deoxygenaated with triphenylphosphine to give α -substituted quinuclidines as shown in Scheme XXXVII in synthetically useful yields. Dipole-stabilization appears to be an important factor in the formation of 181 in this case although complexation could also be involved. An amine oxide system which bears additional activation for anion formation adjacent to nitrogen is methyl N-benzylidine- α -aminoacetate Noxides (183). This system has been metalated and subsequently allowed to react with alkyl halides to give mono- and disubstituted products.¹⁰²

III. Systems with Additional Activation

In the preceding discussion some systems which bear additional activating groups on the carbon-bearing nitrogen have been mentioned. Such systems can be

useful as general α -lithio amine synthetic equivalents if the activating group can be easily removed subsequently to electrophilic substitution.

The use of α -amino nitriles has been generally useful and the deprotonation of α -amino nitriles derived from aldehydes has been shown to give organometallics which have been converted to amino nitriles (80-94%),^{103,104} α,β -unsaturated nitriles (40-70%),¹⁰⁵ enamines,¹⁰⁴ or substituted ketones $(70-90\%)^{106}$ as illustrated for the conversion of 184 to 185 shown in Scheme XXXVIII. A specific example of this approach is the conversion of piperidine to *dl*-conhydrine by Stork et al. shown in

TABLE XXVI.	α -Substituted	Methylamines	via α-Amino	Carbanions f	from Imines

reactant	metalation	electrophile	α-substituted	vield. %	α -substituted methylamine	vield. ⁶ %	ref
	A	CH ₃ I		18°		<u> </u>	87d
	A	CH3I	C_2H_5 $C=N-CH_2CH_3$	17°			87d
(C ₆ H ₅) ₂ C=NCH ₃	B B, C B B	n-C ₃ H ₇ Cl n-C ₃ H ₇ Br n-C ₇ H ₁₅ Br (CH ₃) ₂ CHCH ₂ Br	$(C_{4})_{2}C^{+}$ $(C_{6}H_{5})_{2}C^{-}N(CH_{2})_{3}CH_{3}$ $(C_{6}H_{5})_{2}C^{-}N(CH_{2})_{3}CH_{3}$ $(C_{6}H_{5})_{2}C^{-}N(CH_{2})_{7}CH_{3}$ $(C_{6}H_{5})_{2}C^{-}N(CH_{2})_{2}CH_{3}$	81 81, 63 76 69			87a 87a 87a 87a
	B B	C ₆ H ₅ CH ₂ Cl (CH ₃) ₂ CHBr	$(CH_3)_2$ $(C_6H_5)_2C=N(CH_2)_2C_6H_5$ $(C_6H_5)_2C=NCH_2CH-CH_2CH_2CH-CH_2CH_2CH-CH_2CH-CH_2CH-CH_2CH-CH_2CH-CH_2CH-CH_2CH-CH_2CH-C$	64 84	$C_6H_5(CH_2)_2NH_2$	48	87a 87a
	B, D	$CH_3CH(Br)C_2H_5$	$(CH_3)_2$ $(C_6H_5)_2C \longrightarrow NCH_2CH_2$ $(CH_3)C_6H_5$	18, 70			87a
	В	$CH_{3}CH(Br)C_{3}H_{7}-n$	$(C_6H_5)_2C = NCH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	43			87a
	D	$CH_{3}CH(Br)C_{6}H_{13}-n$	$(C_{6}H_{5})_{2}C \longrightarrow NCH_{2}CH-$ $(CH_{3})C_{6}H_{13}-n$	6			87a
	B , D, E	Br	(C6H5)2C=NCH2	34, 54, 22	CH2NH2	40, 40, 51	87a, 87a, 87c
	Е С, Е	$n-C_8H_{17}Br$ CH ₂ —CHCH ₂ Br	$(C_{6}H_{5})_{2}C = N(CH_{2})_{8}CH_{3}$ $(C_{6}H_{5})_{2}C = N(CH_{2})_{2}-$ $CH = CH_{2}$	64 19, 58	$\overset{CH_3(CH_2)_8NH_2}{CH_2 = CH(CH_2)_2NH_2}$	70 -, 17	87c 87a, 87c
	E C C	BrCH2CH2Br C2H5Br BrCH(CH3)C2H5	$[(C_{6}H_{5})_{2}C=NCH_{2}]_{2}$ $(C_{6}H_{6})_{2}C=N(CH_{2})_{2}CH_{3}$ $(C_{6}H_{5})_{2}C=NCH_{2}CH_{-}$	31 88 66			87c 87a 87a
	С	BrCH(CH ₃)C ₃ H ₇ -n	$(CH_3)C_2H_5$ $(C_6H_5)_2C=NCH_2CH_2$	40			87a
	С	ClSi(CH ₃) ₃	$(C_{g}H_{5})_{2}C = NCH_{2}Si$	51			87 a
	С	$ClSi(C_6H_5)_3$	$(CH_3)_3$ $(C_6H_5)_2C \longrightarrow NCH_2Si-$ $(C_aH_5)_2$	58			87a
	Е	n-C ₃ H ₇ CHO		50			87a
	Е	(CH ₃) ₂ CHCHO		60			87a
	E, F	C ₆ H ₅ CHO		63, 34			87a
	Е	$CH_3COC_2H_5$		78	он сн _а ссн ₂ NH ₂	40	87a
	Е	$(C_2H_5)_2CO$	CH3 OH (CeHe)>C=NCH>C(C>He)>	85	Ć₂H₅		87a
	Ε	С⊢з		75			87a
	E , F , G	$(C_6H_5)_2CO$	$(C_{c}H_{s})_{2}C \longrightarrow (C_{c}H_{s})_{2}$	62, 14, 42		59, 59, 78	87a, 87a, 87c
	E, G			76, 49	CH ₂ NH ₂ OH	69, 70	87a, 87c
	E , G	C ₆ H ₅ COC ₆ H ₄ CH ₃ -p	(С ₆ H ₅) ₂ С==NСС ₆ H ₅	78, 32	он С ₆ н ₅ ССн ₂ NH ₂	69, 78	87a, 87c
	н	CH ₃ COC ₆ H ₅	Ċ ₆ H₄CH ₃ - <i>p</i> OH (C ₆ H₅) ₂ C == NCH ₂ C ₆ H ₅	52	С ₆ H ₄ CH ₃ -р ОН СН ₃ СН ₂ NH ₂	80	86
	н			32	CH2NH2 OH	48	86
			$\langle \rangle$		÷ •		

^aA = LDA in Et₂O at 0 °C; B = LiN(C₂H₅)₂ in THF at -70 °C; C = *n*-BuLi in THF at -78 °C; D = LiN(C₂H₅)₂ in THF/HMPT at -70 °C; E = *n*-BuLi in THF/HMPT at -78 °C; F = *n*-BuLi in Et₂O/HMPT at -78 °C; G = LDA in THF at -60 °C; H = LDA in THF/Et₂O at -45 °C. ^bImine was hydrolyzed with 2-3 N HCl. °Other products were also formed.

 TABLE XXVII. Preparation of Oxazolidine-2-thiones from

 Methyl Isothiocyanate

^a The isothiocyanate was allowed to react with the carbonyl compound in the presence of a catalytic amount of $(n-C_4H_9)_4NF$.

SCHEME XLI

SCHEME XLII

Scheme X (vide supra). α -Metalated amino nitriles also have been successfully employed in the synthesis of 6-aryl-3(2H)-pyridazinones,¹⁰⁷ mysomine,¹⁰⁸ nornicotine,¹⁰⁸ and labeled shihunine precursors.¹⁰⁹ In a similar sequence (diethylamino)acetonitrile serves as an excellent latent formaldehyde anion, thus permitting the transformation of alkyl halides to homologous aldehydes.^{103a}

Another example is provided by the α -amino carbanions 186 generated from α -amino phosphinic acid esters and used in the synthesis of enamines 187 shown in Scheme XXXIX. The phosphorus function can be SCHEME XLIII

removed to form 187 which subsequently can be converted to aldehydes, ketones, or to molecules with spiroannelated five- and six-membered rings in synthetically useful yields.¹¹⁰ Similar substitutions have been reported for phosphinyl derivatives,¹¹¹ and for the substitution of nitrogen of an imine.¹¹²

In addition to the vinyl α -azo carbanions discussed in the preceding section there are a number of such systems which have synthetic value in special cases. Thus, the 6-lithiopyrimidone 188 has been prepared by deprotonation of the corresponding nucleotide 189.¹¹³ Structurally these species are similar to intermediates in the deuteration of N-methyl-4-pyridone⁵ and to the system 190 produced from 191 which was converted to 192 by Schmidt and Betz.¹¹⁴ The substitutions of these systems are summarized in Scheme XL and Table XXIX. Other examples of similar systems have been reported.⁵

IV. Comparison of α -Lithio Amine Synthetic Equivalents

Thirteen functionally different amine derivatives which can be metalated adjacent to nitrogen have been reported in the literature. Succinimides, pivalthioamides, and carbamates have been useful only for the substitution of N-methyl or N,N-dimethylamine. Benzamides, pivalamides, ureas, phosphoramides, imines, and carbamates have been shown to allow metalation of a variety of activated methyl groups. While cyclopropyl, cyclobutyl, 2-dimethylamino and 2-methoxy, and diisocyano isocyanides have been metalated, secondary organometallic reagents have not been formed in high yield from simple alkyl isocyanides. The isocyanides are exceptionally useful, however, for metalation of methyl or additionally activated sites.

The nitrosamines, N,N-dialkyltriphenylacetamides, N,N-dialkyl-2,2-diethylbutanamides, and N,N-dialkylformamidines at present appear to be the most

reactant	base	temp, °C	solvent	electrophile	product	yield,ª %	ref
n-C ₃ H ₇ CH ₂ NSO	$LiC(C_6H_5)_3$	-78	THF	CH2=CHCH2Br	∩-C ₃ H ₇ —CH—NH ₂	65	99
	KOC(CH ₃) ₃	0	DME	CH2=CHCH2Br	CH ₂ CH==CH ₂ ^-C ₃ H ₇ CH=NH ₂ 	46	99
	$LiC(C_{6}H_{5})_{3}$	-78	THF	CH ₂ =C(CH ₃)CH ₂ Cl		40	99
	KOC(CH ₃) ₃	0	DME	$CH_2 = C(CH_3)CH_2Cl$	n-C ₃ H ₇ —CH—NH ₂	58	99
	KOC(CH ₃) ₃	0	DME	(CH ₃) ₂ C=CHCH ₂ Cl	CH ₂ (CH ₃)C=CH ₂ <i>n</i> -C ₃ H ₇ -CHNH ₂	47	99
n-C ₅ H ₁₁ CH ₂ NSO	$LiC(C_6H_5)_3$	-78	THF	CH2=CHCH2Br	$CH_2CH = C(CH_3)_2$ $n - C_5H_{11} - CH - NH_2$	32	99
	KOC(CH ₃) ₃	0	DME	CH2=CHCH2Br	сн ₂ сн=сн ₂ л-С ₅ H ₁₁ СнNH ₂	56	99
	$LiC(C_6H_5)_3$	-78	THF	CH ₂ =C(CH ₃)CH ₂ Cl	CH ₂ CH=CH ₂ n-C ₅ H ₁₁ -CHNH ₂	31	99
	KOC(CH ₃) ₃	0	DME	CH2=C(CH3)CH2Cl		42	99
	KOC(CH ₃) ₃	0	DME	(CH ₃) ₂ C=CHCH ₂ Cl		50	99
NS0	$LiC(C_6H_5)_3$	-78	THF	CH ₂ =CHCH ₂ Br		33	99
	KOC(CH ₃) ₃	0	DME	CH2=CHCH2Br		53	99
	$LiC(C_6H_5)_3$	-78	THF	CH ₂ =C(CH ₃)CH ₂ Cl	NH2 CH2(CH3)C=CH2	23	99
	KOC(CH ₃) ₃	0	DME	$CH_2 = C(CH_3)CH_2Cl$		56	99
	KOC(CH ₃) ₃	0	DME	(CH ₃) ₂ C—CHCH ₂ Cl	CH=CH=CH2	28	99
					~		

TABLE XXVIII. Formation of N-(α -Lithioalkyl)-N-Sulfinylamines and Reaction with Alkyl Halides

^a On aqueous acid workup the N-sulfinyl group is hydrolyzed to the corresponding amine.

SCHEME XLIV

generally useful intermediates as α -lithioalkyl alkylamine synthetic equivalents. Of these the nitrosamines have the broadest scope. The nitrosamines undergo metalation at primary, secondary, and tertiary centers under moderate conditions. Yields on alkylation and addition to carbonyl compounds are high in most cases although tertiary centers appear not to have been added to carbonyl electrophiles and substitution yields are moderate with cyclic systems. Regio- and stereochemical information is available for a number of cases. The difficulty with the use of nitrosamines appears to lie in the denitrosation and in concern about their potential carcinogeneity. A procedure for carrying out all the reactions in the substitution sequence in one pot has been reported.⁴⁵ The N,N-dialkyltriphenylacetamides are useful but give moderate yields when reacted with a number of electrophiles. Cleavage, which to date has been reported only for substituted methylamines, requires exposure to sodionaphthalene. The N,N-dialkyl-2,2diethylbutanamides can be formed, metalated, and reacted with electrophiles fairly effectively and stereochemical information is available for piperidine systems. Cleavage of the amide however requires exposure to strong acid and lithiation of tertiary positions has not been achieved.

Lithiation of formamidines appears to be very promising. The formamidines can be readily prepared, metalated, electrophilically substituted, and reduced or cleaved to the substituted amines. Moreover, this approach has been shown to give exceptional asymmetric control. However, as with the amides, lithiation of a tertiary position has not been reported (See Addendum).

V. Mechanism of Metalation

At the outset of this review it was noted that the activating group Z could provide stabilization for metalation of the organometallic species 8 in Scheme II by complexation, inductive, and/or resonance interactions.

TABLE XXIX. Formation of Vinyl α -Azo Carbanions and Reactions with Electrophiles

reactant	base	solvent	temp, °C	electrophile	product	yield, % R(R')ª	ref
H, Ú	LDA ^b	THF	<-70	$[C_6H_5S]_2$	ų į	83 (77)	113
	LDA ^b	THF	<-70	C ₆ H ₅ COCl		88 (84)	113
R' ^e HO OH	LDA ⁶	THF	<-70	(CH ₃) ₃ CCOCl		72 (95)	113
	LDA ^b	THF	<-70	СН₃СНО		77	113
	LDA ^b	THF	<-70	C₂H₅CHO		76	113
	LDA ^b	THF	<-70	$\rm HCO_2C_2H_5$	CH2OH	66° (73)	113
	LDA	THF	<-70	Å		26	113
	LDA ^b	THF	<-70	(C ₆ H ₅) ₂ CO	H CH OCC ₆ H ₆) ₂	74 (87)	113
	LDA ^b	THF	<-70	(CH ₃) ₂ CO	H N CICH _{3/2}	19 (88)	113
	LDA ^b	THF	<-70			30 (85)	113
C ₄ H ₉ -n	sec-BuLi	THF	-42	D_2O		85	122
(сн ₃ 3сос==о	sec-BuLi	THF	-42	(CH₃)₃SiCl	(CH3)3CO	85	122
	sec-BuLi	THF	-42	CH3I		72	122
					(CH3)3C0 - C=0		

TABLE XXIX (Continued)

reactant	base	solvent	temp, °C	electrophile	product	yield, % R(R')ª	ref
	sec-BuLi	THF	-42	сн _з о—с—осн _з		89	122
	sec-BuLi	THF	-42	сн _з —с-сі	CH ₂)-CCCCH ₃	70	122
	sec-BuLi	THF	-42	CH ₃ SSCH ₃		83	122
CH30 002CH3	LDA	THF	-100	n-C₃H7CHO		56	114
	LDA	THF	-100	C _€ H₅CHO	СН ₃ 0 Со ₂ СН ₃	64	114
	LDA	THF	-100	СН₃СН—СНСНО	сн ₃ 0 со ₂ сн ₃	60	114
СH35 СО2СH3 Ш (СH32N H	LDA	THF	-100	n-C ₃ H ₇ CHO	CH ₃ S _C CO ₂ CH ₃ CH ₃ S _C CO ₂ CH ₃ CH ₃ S _C CO ₂ CH ₃	72	114
^a Deprotection was duction with NaBH.	accomplished h	oy treatment	with 50% aqu	eous CF_3CO_2H at amb	ient temperature. ^b 2.5 e	quiv was used	° After re-

Stereochemical investigations of nitrosoamine carbanions have been useful in defining the nature of the anions, and these results have been reviewed.^{48,52} Careful investigation by Fraser et al. has established that π -delocalization is the dominant factor in stabilizing the anion of N-nitroso-6,7-dihydro-1,11-dimethyl-5*H*-dibenz[*c*,*e*]azepine which is formed by the stereoselective removal of the syn-axial proton. Fraser's work ruled out dipole stabilization or metal ion complexation as dominant contributors to the transition state for carbanion formation.

For the lithiation of amides, syn substitution, demonstrated for the conversion of 193 to 194 in Scheme XLI has been taken to indicate complexation plays a major role in the reaction.^{5,8,115,116} Infrared observation of the lithiation of 193 in a stopped-flow spectrometer recently has revealed the existence of a complex 195 in equilibrium with 193 which is converted to 196, the precursor for the syn deuterated product 194. A possible mechanism for lithiation is conversion of 195 to 196 directly but alternatives exist and more information will be required to decide the mechanism. The direct observation of 195 provides evidence for the importance of complexation by lithium in the sequence.

Evidence for dipole stabilization by the amide comes for the equatorial substitution noted for the conversion of 21 to 23 and the bridgehead substitution of 48. This result is taken to imply that lithiation and substitution occur via an sp³ hybridized intermediate. It should be noted that the species illustrated for purposes of this review as carbanions are probably aggregated organolithium species with a carbon-lithium bond. Both complexation and dipole stabilization of the α' -amido organolithium species are supported by calculations.⁸ Recently Bach et al. have carried out calculations which explain the orthogonal stereochemistry of these species in terms of 4-electron HOMO-HOMO repulsions of the alternative orbitally parallel π species.¹¹⁷ Reactions of the α -lithiated species from N,N-dialkylformamides has been discussed in terms of the importance of solvent dissociating from the lithium in a complex.¹¹⁸

VI. Summary

The present review summarizes 5 years of progress in the development of methodology to effect elaboration of amines via α metalloorganic amine synthetic equivalents. The conversion of 1 to 5 via 6 in Scheme I is now feasible for a wide variety of amines. This new strategy provides approaches to amine elaboration which frequently is more efficient than the classical

TABLE XXX. Formation of α -Lithiated N-Alkylpyrazoles and Reactions with Electrophiles

reactant	base	temp, °C	solvent	electrophile	product	yield, %	ref
CH3 CH3	n-BuLi	-78	THF	D ₂ O	CH3 CH3	99	127
CH3	n-BuLi	-78	THF	CH₃I	CH3 CH3 CH3	52	127
	n-BuLi	-78	THF	p-CH₃C₅H₄COCl		92	127
	n-BuLi	-78	THF	C ₆ H₅COCl		22	127
	n-BuLi	-78	THF	C ₆ H ₅ COCl (excess)		85	127
	n-BuLi	-78	THF	m-CH₃C ₆ H₄CHO	, сн ³ сн ³ сн ³ сн ² сн ² сн ²	84	127
	n-BuLi	-78	THF	сн 3— с—с ^е н ²	CH3 CH3 CH3 CH3	78	127
	n-BuLi	-78	THF	(C ₆ H ₅)₂CO	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	80	127
	n-BuLi	-78	THF		CH3 CH2 OH	65	127
CH3 CH2CH3	t-BuLi	-78	THF	<i>p</i> -CH ₃ C ₆ H ₄ CO ₂ CH ₃		22	127
CH3	<i>n</i> -BuLi	-78 → 0	THF	C _e H ₆ CHO	$ \begin{array}{c} \overset{\circ}{CH_3} & \overset{\circ}{\overset{\circ}{CH_3}} \\ \overset{\circ}{\overset{\circ}{H_2-CH}} & + & \overset{\circ}{\overset{\circ}{CH_3}} \\ \overset{\circ}{\overset{\circ}{CH_2-CH}} & & \overset{\circ}{\overset{\circ}{CH_3}} \\ \overset{\circ}{\overset{\circ}{CH_3}} & \overset{\circ}{\overset{\circ}{CH_3}} \\ \end{array} $	57	127
	n-BuLi	-78 → 0	THF	₽-CH₃C6H4CHO		68	127

ADULIAAA (bere bere	tome of	columnt	alaatsambila	nadest	wield 07	
reactant	n-BuLi	-78	THF	p-CH ₂ C ₄ H ₂ C ₀ CH ₂	OH product	yieid, %	127
	W Dalli	10		p-0113081140020113		21	121
CH ₂ CH ₃	t-BuLi	-78	THF	p-CH ₃ C ₆ H ₄ CO ₂ CH ₃	CH3 OH CH2CH3 CH2CH3 CH2CH3	21	127
	n-BuLi	-78 → 23	THF	CO ₂ , H ⁺	HO2C N	35	127
ĊH2C6H5	n-BuLi	-78	THF	CO ₂ , H ⁺		32	127
	n-BuLi	-78	THF	p-CH ₃ C ₆ H ₄ CO ₂ CH ₃		29	127
	n-BuLi	78	THF		CH3 CH3 CH-CeH5 CH2	42	127
	n-BuLi	-78	ТНF	p-CH ₃ C ₆ H ₄ COCl		73	127
	n-BuLi	-78	THF	₽-CH₃C6H4CHO		54	127
	n-BuLi	-78	THF	C ₆ H ₅ COCH ₈		62	127
	n-BuLi	-78	THF	(C ₆ H ₈) ₂ CO	HO-Ç-CH3 ÇeH5	85	127

routes shown in the first two entries in Scheme I. In many cases combinations of two of these general strategies provides exceptionally useful methodology (See Addendum).

VII. Addendum

After the submission of this review a number of pertinent articles which amplify and significantly ex-

tend earlier reports appeared. Those reports are presented in this addendum, classified by activating group, and the new information is included in the Tables.

Amides. The tetrahydroisoquinoline nucleus continues to attract attention.

A full report on the 2-pivaloyltetrahydroisoquinoline **39a**, including a summary and perspective on the methodology, has appeared.¹¹⁹ The nucleophilicity of

40a is notable as is the fact substitutions can be carried out sequentially at the 1-position. In the case of methyl iodide as the electrophile the amide 197 is provided in two steps. Cleavage of the pivalamide group however, is difficult, requiring strongly reducing conditions and providing the neopentyl derivative 198 in addition to the secondary amines 199.

Further work on heteroaromatic amides has appeared.¹²⁰ Thus **200** can be formed by reaction of LDA with the corresponding imidazolene; it reacts with the usual electrophiles to give substituted products in 60-85% yields. The corresponding 1-ethyl compound undergoes metalation on the aromatic ring. The dianions **201**, **202**, and **203** have also been reported.¹²⁰

Carbamates. The use of derivatives of the carbamate 74 for the synthesis of $\Delta^{1,2}$ -pyrrolizidine alkaloids has been reported and is shown in Scheme XLII.¹²¹ Reaction of the readily available pyrrole derivative 204 with 2 equiv of lithium tetramethylpiperidide followed by alkylation, cleavage of the carbonate group, and spontaneous cyclization gives supinidine (205) in good yield. This approach again demonstrates the value of a bifunctional electrophile in ring formation at carbon and nitrogen of an α -lithio amine synthetic equivalent.

A recent case of carbamate activation of a vinyl position has been provided by Comins for 1,4-dihydropyridine systems.¹²² The latter is obtained by addition of *n*-butylmagnesium chloride in the presence of copper iodide to the 1-(phenoxycarbonyl)pyridinium chloride 206 as shown in Scheme XLIII. Treatment of 207 with *sec*-butyl lithium and electrophiles provide 208 which can be oxidized to the pyridine 209. An interesting feature of this system is removal of a vinyl hydrogen even in the presence of a benzylic proton; thus **210** is provided from the corresponding 1,4-dihydropyridine.

Phosphonamides. The phsophonamide tetrahydroisoquinoline 87b is readily available although somewhat less nucleophilic than the corresponding pivalamide 39a. The advantage of the phosphonamide system lies in its ready hydrolysis to provide the substituted tetrahydroisoquinoline in high yield.¹¹⁹

Nitrosoamines. An approach to the preparation of a primary α -lithio amine synthetic equivalent has been provided by Saavedra and is illustrated in Scheme XLIV.¹²³ Thus the α -(nitrosoamino)alkyl ether 211, prepared from methylamine and acetaldehyde, methanol, and nitrous acid, can be metalated, allowed to react with an electrophile, and hydrolyzed to the substituted primary amine 212. The approach should be readily extendable to more highly substituted amines.

Formamidines. The details of the enantioselective syntheses using the α' -lithio tetrahydroisoquinoline formamidine 144 which is optically active and its derivatives have been reported.¹²⁴ Improved procedures for the preparation of the formamidines and alkylations which provide enantiomeric excesses greater than 90% from 144 are notable. The use of enantiomeric formamidines in asymmetric induction is illustrated by the use of (S)- and (R)-valinol derivatives to provide the (S)-148 and (R)-148 as shown in Scheme XLV.

In other work Meyers and Fuentes have observed that deuteration of 144a gives $213 \cdot d_1$ which in subsequent lithiation followed by reaction with methyl iodide gives (S)-148 containing only 10% deuterium.¹²⁵ A reasonable explanation of these results is that the dipole-stabilized species 144a has association of the nitrogen and oxygen of the formamidine groups with a pseudoequatorial lithium. The important role of lithium ion is suggested by the observation that if metalation is carried out with potassium diisopropylamide the product is obtained with less than 10% ee.

A full report on the use of formamidines for synthesis of α -lithio amine synthetic equivalents of unactivated cyclic systems has been given.¹²⁶ The *tert*-butylformamidines have proved useful for the formation of 214, 215, 216, with *sec*-butyl- or *tert*-butyllithium and the subsequent alkylation to 217, 218, and 219, respectively, can be achieved in good yields under appropriate conditions as shown in the Tables. Cleavage to free the

substituted amine with hydrazine and acetic acid is an especially mild procedure, although reductive and base

SCHEME XLV

procedures are also available. Alkylation of 214, 215, and 216 occurs in good yields if the lithiation is followed by addition of pentynylcopper prior to reaction with the alkyl halide. Alternatively, alkylation of 214 and 216 can be achieved in the presence of hexamethyl phosphorous triamide (HMPA). In the absence of pentynylcopper or HMPA, oxidation occurs with 214, 215, and 216. The authors suggest for 215 that it involves formation of an axial carbon-lithium bond which promotes electron transfer. In the piperidine case substitution of the 4-position with tert-butyl or benzhydryl groups provides an α -lithic intermediate which undergoes alkylation with methyl iodide without the pentynylcopper or HMPA.

Disubstitution of the amines has also been achieved by Meyers' group. Thus 214, 215, and a 4-tert-butylpiperidine derivative have been converted in a two-step procedure to 220, 221, and 222, respectively. The amine 220, a fire ant venom, is obtained as a 60:40 mixture, while 221 is a 1:1 mixture of cis and trans isomers. The product 222 on the other hand is only the cis, cis isomer consistent with the equatorial assignment to the organolithium intermediate.

The formamidine activating group is also useful in systems which possess additional activation for deprotonation. Thus the tetrahydropyridine derivative 223, the thiazole 224, and thiazene 225 derivatives are readily lithiated by *n*-butyllithium and react with electrophiles to give 226, 227, and 228, respectively. Electrophilic

substitution of the organolithium from 223 occurs mainly at the 4-position and the products can be reduced and cleaved to 4-substituted piperidines. Thus this methodology can be used for synthesis of 2- and 4-substituted piperidines. The thiazoles and thiazenes behave normally on electrophilic substitution and, as the authors note, may prove to be useful in antibiotic syntheses.

Systems which are formally vinylogous formamidines, the pyrazoles 229 and 230 are reported to undergo lithiation with *n*-butyllithium at -78 °C to give 231 and 232, respectively,¹²⁷ and are presented in Table XXX.

The apparent kinetic acidity of this position, instead of lithiation on the methyl at the 3-position, is notable. The pyrazole 233 undergoes initial metalation at the benzyl group at -78 °C and electrophilic substitutions are possible; however, that species rearranges to the 5-lithio derivative on warming. The 1-methylpyrazole (234) gives a mixture of 235 and the 5-lithio derivative on treatment with *n*-butyllithium.

Acknowledgments. We are grateful to the Natural Institutes of Health-Institute of General Medicine and the National Science Foundation for support of the work at the University of Illinois.

VIII. References

- (1) S. Patai, Ed., "The Chemistry of the Amino Group", Inter-science, New York, 1968.
- J. R. Milpass, Compr. Org. Chem., 2, 3-19 (1979). (a) F. D. Lewis and P. E. Correa, J. Am. Chem. Soc., 103, 7347 (1981); (b) D. J. Hart and Y. M. Tsai, *ibid.*, 104, 1430 (3)(1982)
- (a) E. J. Corey, Pure Appl. Chem., 14, 19 (1967); (b) D. A.
 Evans and G. C. Andrews, Acc. Chem. Res., 7, 147 (1974); (c)
 B. Gröbel and D. Seebach, Synthesis, 357 (1977).
 P. Beak and D. B. Reitz, Chem. Revs., 78, 275 (1978). (4)
- D. Seebach, Angew. Chem., Int. Ed. Engl., 18, 239 (1979). (a) Reference 2, chapter 7; for recent developments; (b) P. A.
- Wade, S. D. Morrow, and S. A. Hardinger, J. Org. Chem., 47, 365 (1982); (c) D. Seebach and F. Lehr, Helv. Chem. Acta., 62, 2239 (1979); (d) F. Lehr, J. Gonnermann, and D. Seebach, ibid., 62, 2258 (1979).
- N. G. Rondan, K. N. Houk, P. Beak, W. J. Zajdel, J. Chan-(8)drasekhar, P. v. R. Schleyer, J. Org. Chem., 46, 4108 (1981).

- (9) (a) R. Schlecker, D. Seebach, and W. Lubosch, *Helv. Chim.* Acta., 61, 512 (1978); (b) W. Wykypiel, J. Lohmann, D. See-(10) D. B. Reitz, P. Beak, and A. Tse, J. Org. Chem., 46, 4316
- (1981).
- (11) P. Beak and W. J. Zajdel, J. Am. Chem. Soc., 106, 1010 (1984)
- (12) (a) A. N. Tischler and M. H. Tischler, Tetrahedron Lett., 3 (1978); (b) A. N. Tischler and M. H. Tischler, *ibid.*, 3407 (1978)
- (13) E. C. Taylor, R. J. Clemens, H. M. L. Davies, and N. F. Haley, J. Am. Chem. Soc., 103, 7659 (1981). (14) J. Lohmann, D. Seebach, M. A. Syfrig, and M. Yoshifuji,
- J. Lohmann, D. Seebach, M. A. Syrig, and M. Yoshiruji, Angew. Chem., Int. Ed. Engl., 20, 128 (1981).
 (a) D. Seebach and W. Lubosch, Angew. Chem., Int. Ed. Engl., 15, 313 (1976); (b) P. Beak and W. J. Zajdel, unpub-lished results; (c) D. B. Reitz, unpublished results.
 (a) A. R. Katritzky, N. E. Grzeskowiak, H. J. Salgado, and Z. bin Bahari, Tetrahedron Lett., 4451 (1980); (b) A. R. Ka-tritcher L. Argenerative 7 bits Rebest C. Lucreer, T. Siddi
- tritzky, J. Arrowsmith, Z. bin Bahari, C. Jayaram, T. Siddi-qui, and S. Vassilatos, J. Chem. Soc., Perkin Trans. 1, 2851 (1980); (c) A. R. Katritzky, J. Arrowsmith, N. E. Grzeskowiak, H. J. Salgado, and Z. bin Bahari, *ibid.*, 143 (1982); (d) A. R. Katritzky, H. J. Salgado, A. Chermprapai, and N. K. Ponkshe, *ibid.*, 153 (1982).
- (17) T. Fukuyama, S. Nakatsuka, and Y. Kishi, Tetrahedron, 37, 2045 (1981)
- (18) (a) R. M. Williams, Tetrahedron Lett., 2341 (1981); (b) S. Nakatsuka, K. Yoshida, and T. Goto, *ibid.*, 2009 (1981). (19) F. W. Eastwood, D. Gunawardana, and G. T. Wernert, Aust.
- I. Chem., 35, 2289 (1982).
- (20) G. Stork, R. M. Jacobson, and R. Levitz, Tetrahedron Lett., 771 (1979)
- (21) A. S. Fletcher, K. Smith, and K. Swaminathan, J. Chem. Soc., Perkin Trans. 1, 1881 (1977)
- (22) D. Enders and H. Lotter, Angew. Chem., Int. Ed. Engl., 20, 795 (1981).
- (23) V. Rautenstrauch and M. Joyeux, Angew. Chem., Int. Ed. Engl., 18, 83 (1979). (24) T. Tsuda, M. Miwa, and T. Saegusa, J. Org. Chem., 44, 3734
- (1979)
- (25)V. Rautenstrauch and F. Delay, Angew. Chem., Int. Ed. Engl., 19, 726 (1980).
 (26) S. Fukuoka, M. Ryang, and S. Tsutsumi, J. Org. Chem., 36,
- 2721 (1971)
- (27) W. Lubosch and D. Seebach, Helv. Chim. Acta, 63, 102 (1980)
- (a) T. J. Grinter, D. Leaver, R. M. O'Neil, Inorg. Nucl. Chem. Lett., 16, 145 (1980); (b) Y. Tamaru, M. Kagotani, and Z. (28)
- Yoshida, Angew. Chem., Int. Ed. Engl., 20, 980 (1981). (a) D. Seebach, W. Lubosch, and D. Enders, Chem. Ber., 109, 1309 (1976); (b) H. Kalinowski, W. Lubosch, and D. Seebach, (29)ibid., 110, 3733 (1977)
- (30) R. Schlecker and D. Seebach, Helv. Chim. Acta, 60, 1459 (1977).
- T. Hassel and D. Seebach, Helv. Chim. Acta, 61, 2237 (1978).
- T. Hassel and D. Seebach, Angew. Chem., Int. Ed. Engl., 18, (32)399 (1979).
- (33) D. Seebach and T. Hassel, Angew. Chem., Int. Ed. Engl., 17, 274 (1978).
- (34) (a) J. C. Armande and U. K. Pandit, Tetrahedron Lett., 897
- (34) (a) J. C. Armande and U. K. Pandit, Tetrahedron Lett., 897 (1977); (b) J. C. Armande and U. K. Pandit, Recl. Trav. Chim. Pays-Bas, 99, 87 (1980).
 (35) T. L. Macdonald, J. Org. Chem., 45, 193 (1980).
 (36) (a) D. A. Evans, C. H. Mitch, R. C. Thomas, D. M. Zimmerman, and R. L. Robey, J. Am. Chem. Soc., 102, 5955 (1980); (b) S. F. Martin and M. T. DuPriest, Tetrahedron Lett., 3925 (1977); (c) H. Ahlbrecht and C. S. Sudheendranath, Synthesis, 717 (1982); (d) J. C. Craig and N. N. Ekwuribe, Tetrahedron Lett., 2587 (1980).
 (37) (a) P. Savienac, M. Dreux, and Y. Leroux, Tetrahedron Lett.
- (a) P. Savignac, M. Dreux, and Y. Leroux, Tetrahedron Lett.,
 2651 (1974); (b) P. Savignac, Y. Leroux, and H. Normant,
 Tetrahedron, 31, 877 (1975); (c) P. Savignac, and M. Dreux,
 Tetrahedron Lett., 2025 (1976); (d) B. Corbel and J. P. Pau-(37)gam, ibid., 835 (1976); (e) P. Magnus and G. Roy, Synthesis, 575 (1980)
- (38) D. Seebach and M. Yoshifuji, Helv. Chim. Acta, 64, 643 (1981).
- (39) D. Seebach and D. Enders, Angew. Chem., Int. Ed. Engl., 14,
- (39) D. Seebach and D. Enders, Angew. Chem., Int. Ed. Engl., 14, 15 (1975).
 (40) D. Seebach and D. Enders, Chem. Ber., 108, 1293 (1975).
 (41) (a) D. Seebach and D. Enders, Angew. Chem., Int. Ed. Engl., 11, 301 (1972); (b) D. Seebach, D. Enders, and B. Renger, Chem. Ber., 110, 1852 (1977); (c) B. Renger and D. Seebach, ibid., 110, 2334 (1977).
 (42) (a) D. Seebach and D. Enders, Angew. Chem., Int. Ed. Engl., 12, 301 (1972); (c) B. Renger and D. Seebach, and D. Seebach, 12, 301 (1972); (c) B. Renger and D. Seebach, 12, 301 (1972); (c) B. Renger and D. Seebach, 301 (1972); (c) B. Renger and B. Renger, 301 (1972); (c) B. Renger and 301 (19
- (a) D. Seebach and D. Enders, Angew. Chem., Int. Ed. Engl. 11, 1101 (1972); (b) D. Seebach and D. Enders, *ibid.*, 11, 1102 (42)
- (43) D. Seebach and D. Enders, J. Med. Chem., 17, 1225 (1974).
- (44) (a) D. Enders, R. Pieter, B. Renger, and D. Seebach, Org.

- Synth., 58, 113 (1978); (b) D. Enders, T. Hassel, R. Pieter, B. Renger, and D. Seebach, Synthesis, 548 (1976).
 (45) D. Seebach and W. Wykypiel, Synthesis, 423 (1979).
 (46) (a) B. Renger, H. Hügel, W. Wykypiel, and D. Seebach, Chem. Ber., 111, 2630 (1978); (b) B. Renger and D. Seebach, ibid., 110, 2334 (1977).
 (47) K. Piotrowska, Synth. Commun., 9, 765 (1979).
 (48) D. Barton, R. Bracho, A. Gunatilaka, and D. Widdowson, J.

- (47) K. Piotrowska, Synth. Commun., 9, 765 (1979).
 (48) D. Barton, R. Bracho, A. Gunatilaka, and D. Widdowson, J. Chem. Soc., Perkin Trans 1, 579 (1975).
 (49) (a) D. Seebach, D. Enders, B. Renger, and W. Brügel, Angew. Chem., Int. Ed. Engl, 12, 495 (1973); (b) D. Seebach, R. Dach, D. Engers, B. Renger, M. Jansen, and G. Brachtel, Helv. Chim. Acta, 61, 1622 (1978).
 (50) D. Seebach, D. Enders, R. Dach, and R. Pieter, Chem. Ber., 110, 1879 (1977).
 (51) R. Freeser and S. Decompositi, Conthemic 546 (2027).

- 110, 1879 (1977).
 (51) R. Fraser and S. Passannanti, Synthesis, 540 (1976).
 (52) (a) R. Fraser, T. Grindley, and S. Passannanti, Can. J. Chem., 53, 2473 (1975); (b) R. Lyle, J. Saavedra, G. Lyle, H. Fribush, and J. Marshall, Tetrahedron Lett., 4431 (1976); (c) B. Renger, H. Kalinowski, and D. Seebach, Chem. Ber., 110, 1866 (1977); (d) R. Fraser and L. Ng, J. Am. Chem. Soc., 98, 5895 (1976) 5895 (1976).
- (53) D. Seebach and K. Greiss, in "New Applications of Organometallic Reagents in Organic Synthesis", D. Seyferth, Ed., Elsevier, Amsterdam, 1976, pp 1-92.
 (54) K. Soai and T. Mukaiyama, Bull. Chem. Soc. Jpn., 52, 3371
- (1979)
- (55) W. Wykypiel and D. Seebach, Tetrahedron Lett., 1927 (1980)
- (156) (a) R. N. Loeppky, W. A. McKinley, L. G. Hazlitt, and J. R. Outram, J. Org. Chem., 47, 4833 (1982); (b) R. N. Leppky and L. G. Hazlitt, *ibid.*, 47, 4841 (1982).
 (57) F. Gerhart and U. Schöllkopf, *Tetrahedron Lett.*, 6231
- (1968)
- (a) U. Schöllkopf, Angew. Chem., Int. Ed. Engl., 16, 339 (1977); (b) U. Schöllkopf, Pure and Appl. Chem., 51, 1347 (58)(1979); (c) D. Hoppe, Angew. Chem., Int. Ed. Engl., 13, 789 (1974)
- U. Schöllkopf, H. Lau, K. Scheunemann, E. Blume, and K. (59)Madawinata, Leibigs Ann. Chem., 600 (1980), and references cited therein.
- (a) I. Hoppe and U. Schöllkopf, Leibigs Ann. Chem., 103 (1981);
 (b) D. Stafforst and U. Schöllkopf, ibid., 28 (1980). (60)
- (61)U. Schöllkopf, P. H. Porsh, and E. Blume, Leibigs Ann. Chem., 2122 (1976)
- (62) K. Matsumoto, M. Suzuki, and M. Miyoshi, J. Org. Chem., 38, 2094 (1973)
- (63) U. Schöllkopf, K. W. Henneke, K. Madawinata, and R. Harms, Leibigs Ann. Chem., 40 (1977).
 (64) A. P. Kozikowski and N. M. Hasan, J. Org. Chem., 42, 2039
- 1977)
- (65)U. Schöllkopf and K. Scheunemann, Leibigs Ann. Chem., 1348 (1980), and references cited therein.
- K. Nunami, M. Suzuki, and N. Yoneda, J. Org. Chem., 44, (66)1887 (1979).
- U. Schöllkopf and R. Meyer, Leibigs Ann. Chem., 1174 (67)(1977)
- (68)J. Rachoń, U. Schöllkopf, and T. Wintel, Leibigs Ann. Chem., 709 (1981).
- (69) J. Rachofi and U. Schöllkopf, *Leibigs Ann. Chem.*, 99 (1981).
 (70) R. Meyer, U. Schöllkopf, K. Madawinata, and D. Stafforst,
- (1) Leibigs Ann. Chem., 1982 (1978).
 (71) S. P. van Nispen, J. H. Bregman, D. G. van Engen, A. M. van
- Leusen, H. Saikachi, T. Kitagawa, and H. Sasaki, Rec. Trav.
- Chim. Pays-Bas, 28 (1982). (72) H. Saikachi, T. Kitagawa, and H. Sasaki, Chem. Pharm. Bull., 27, 2857 (1979).
- (73) O. Possel and A. M. van Leusen, Tetrahedron Lett., 4229 1977
- (74) U. Schöllkopf, D. Stafforst, and R. Jentsch, Leibigs Ann. Chem., 1167 (1977)
- U. Schöllkopf, F. Gerhart, I. Hoppe, R. Harms, K. Hantke, K. Scheunemann, E. Eilers, and E. Blume, *Leibigs Ann.* (75)Chem., 183 (1976)
- (76) R. Harms, U. Schollkopf, and M. Muramatsu, Leibigs Ann. Chem., 1194 (1973). (a) H. M. Walborsky and M. P. Periasamy, J. Ann. Chem.
- (a) H. M. Walborsky and M. P. Periasamy, J. Ann. Chem. Soc., 96, 3711 (1974); (b) M. P. Periasamy and H. M. Walborsky, *ibid.*, 99, 2631 (1977).
 (a) G. E. Niznik, W. H. Morrison, III, and H. M. Walborsky, J. Org. Chem., 39, 600 (1974); (b) N. Hirowatari and H. M. Walborsky, *ibid.*, 39, 608 (1974); (c) G. E. Niznik, and H. M. Walborsky, *ibid.*, 39, 608 (1974). (78)
- A. I. Meyers and W. Ten Hoeve, J. Am. Chem. Soc., 102, 7125 (79)(1980).
- A. I. Meyers and S. Hellring, Tetrahedron Lett., 5119 (1981).
- A. I. Meyers, S. Hellring, and W. Ten Hoeve, Tetrahedron (81)Lett., 5115 (1981). A. I. Meyers and S. Hellring, J. Org. Chem., 47, 2229 (1982).
- (82)
- (83) A. I. Meyers and L. M. Fuentes, J. Am. Chem. Soc., 105, 117

(1983)

- (84) A. I. Meyers and G. E. Jagdmann, Jr., J. Am. Chem. Soc., 104, 877 (1982). (85) J. J. Fitt and H. W. Gschwend, J. Org. Chem., 42, 2639
- 1977`
- (86) T. Kauffmann, E. Köppelmann, and H. Berg, Angew. Chem.,
- (86) T. Kaufmann, E. Köppelmann, and H. Berg, Angew. Chem., Int. Ed. Engl., 9, 163 (1970).
 (87) (a) P. Hullot and T. Cuvigny, Bull. Soc. Chim. Fr. 2989 (1973); (b) J. E. Arrowsmith, M. J. Cook, and D. J. Hard-stone, J. Chem. Soc., Perkin Trans 1, 2364 (1979); (c) T. Kauffmann, H. Berg, E. Köppelmann, and D. Kuhlmann, Chem. Ber., 110, 2659 (1977); (d) H. Ahlbrech and W. Far-nung, ibid 110, 596 (1977). (a) T. Kauffmann and E. Köppelmann, Angew. Chem., Int
- (88) Ed. Engl., 11, 290 (1972); (b) S. E. Davis, L. M. Schaffer, N. L. Shealy, K. D. Shealy, and C. F. Beam, Synth. Commun., 7, 261 (1977); (c) T. Kauffmann, Angew. Chem., Int. Ed. Engl., 13, 627 (1974).
- (89) D. J. Bower and M. E. Howden, J. Chem. Soc., Perkin Trans , 672 (1980).
- (90) R. A. Gracheva, V. M. Potapov, N. A. Sivov, and L. I. Sivova, J. Org. Chem. USSR (Engl. Transl.), 17, 1963 (1982).
 (91) R. Richter and G. H. Temme, J. Org. Chem., 43, 1825 (1978).
 (92) T. Kauffmann, U. Koch, F. Steinseifer, and A. Vahrenhorst,

- Kaurmann, U. Koch, F. Steinseifer, and A. Vanrenhorst, Tetrahedron Lett., 3341 (1977).
 (a) E. H. W. Böhme, H. E. Applegate, B. Toeplitz, J. E. Dolfini and J. Z. Gougoutas, J. Am. Chem. Soc., 93, 4324 (1971); (b) E. W. Böhme, H. E. Applegate, J. B. Ewing, P. T. Funke, M. S. Puar, and J. E. Dolfini, J. Org. Chem., 38, 230 (1973); (c) T. Durst and M. J. LeBelle, Can. J. Chem., 50, 9106 (1072)); (d) B. A. Einstein, M. Schelker, D. B. Lebra, (93)3196 (1972); (d) R. A. Firestone, N. Schelechow, D. B. Johnston, and B. G. Christensen, Tetrahedron Lett., 375 (1972); (e) R. A. Firestone and B. G. Christensen, J. Chem. Soc., Chem. Commun., 288 (1976); (f) D. Hoppe, Angew. Chem., Int. Ed. Engl., 14, 426 (1975); (g) D. Hoppe and L. Beck-mann, Leibigs Ann. Chem., 2066 (1979); (h) D. Hoppe and L. Beckmann, *ibid.*, 1751 (1980); (i) D. Hoppe and E. Raude,
- (94) (a) G. Stork, A. Y. W. Leong, and A. M. Touzin, J. Org. Chem., 41, 3491 (1976); (b) P. Bey and J. P. Vevert, Tetra-hedron Lett., 1455 (1977); (c) M. J. O'Donnell, J. M. Boniece, hedron Lett., 1455 (1977); (c) M. J. O'Donnell, J. M. Boniece, and S. E. Earp, *ibid.*, 2641 (1978); (d) D. Taub and A. A. Patchett, *ibid.*, 2745 (1977); (e) B. W. Metcalf and K. Jund, *ibid.*, 3689 (1977); (f) S. Yamada, T. Oguri, T. Shioiri, J. Chem. Soc., Chem. Commun., 136 (1976); (g) T. Oguri, T. Shioiri, and S. Yamada, Chem. Pharm. Bull., 25, 2287 (1977); (h) H. A. Houwing, J. Wildeman, and A. M. van Leusen, *Tetrahedron Lett.*, 143 (1976); (i) A. M. van Leusen, H. J. Jeuring, J. Wildeman and S. van Nianen J. Org. Chem. 46 Jeuring, J. Wildeman, and S. van Nispen, J. Org. Chem., 46, 2069 (1981).
- (95) T. Kauffmann, D. Berger, B. Scheere, and A. Woltermann,
- (95) T. Kauffmann, D. Berger, B. Scheere, and A. Woltermann, Chem. Ber., 110, 3034 (1977).
 (96) T. Hirao, A. Yamada, Y. Ohshiro, and T. Agawa, Angew. Chem., Int. Ed. Eng., 20, 126 (1981).
 (97) D. Hoppe and R. Follmann, Chem. Ber., 109, 3047 (1976).
 (98) (a) D. Hoppe, Angew. Chem., Int. Ed. Engl., 11, 933 (1972); (b) D. Hoppe and R. Follmann, Chem. Ber., 109, 3062 (1976); (c) D. Hoppe and M. Kloft, Leibigs Ann. Chem., 1850 (1976); (d) I. Hoppe, D. Hoppe, and U. Schöllkopf, Tetrahedron Lett. 609 (1976) Lett., 609 (1976).

- (99) F. M. Schell, J. P. Carter, and C. Wiaux-Zamar, J. Am. Chem. Soc., 100, 2894 (1978).
- (100) R. A. Abramovitch and E. M. Smith, "Pyridine and its Derivatives", R. A. Abramovitch, Ed., Wiley, New York, 1974, Vol. 14, Suppl. 2, part 2, pp 149–161. (101) D. H. R. Barton, R. Beugelmans, and R. N. Young, *Nouv. J.*
- Chim., 2, 363 (1978)
- H. Lau and U. Schöllkopf, Leibigs Ann. Chem., 1378 (1981).
 (a) V. Reutrakul, P. Ratananukul, and S. Nimgirawath, (103)Chem. Lett., 71 (1980); (b) H. Schick, F. Theil, H. Jablokoff,
- and S. Schwarz, Z. Chem., 21, 68 (1981). (104) S. F. Dyke, E. P. Tiley, A. W. C. White, and D. P. Gale, Tetrahedron, 31, 1219 (1975).
- (105) F. J. McEvoy and J. D. Albright, J. Org. Chem., 44, 4597 (1979).
- (a) V. Reutrakul, S. Nimgirawath, S. Panichanun, and P. Ratananukul, *Chem. Lett.*, 399 (1979); (b) G. Büchi, P. H. Liang, and H. Wüest, *Tetrahedron Lett.*, 2763 (1978). (106)
- (107) J. D. Albright, F. J. McEvoy, and D. B. Moran, J. Hetero-cyclic Chem., 15, 881 (1978).
 (108) E. Leete, M. R. Chedekel, and G. B. Bodem, J. Org. Chem.,
- 37, 4465 (1972).
- (109) E. Leete and G. B. Bodem, J. Am. Chem. Soc., 98, 6321 (1976).
- (110) (a) S. F. Martin, J. Org. Chem., 41, 3337 (1976); (b) S. F. Martin, T. Chou, and C. W. Payne, *ibid.*, 42, 2520 (1977); (c) S. F. Martin, G. W. Phillips, T. A. Puckette, and J. A. Cola-S. F. Martin, G. W. Phillips, T. C. Puckette, and J. A. Cola-S. F. Martin, G. W. Phillips, T. A. Puckette, and J. Puckette, and J. A. Cola-S. F. Martin, G. W. Phillips, T. A. Puckette, and J. A. Cola-S. F. Martin, G. W. Phillips, T. A. Puckette, and J. A. Cola-S. F. Martin, G. W. Phillips, T. A. Puckette, and J. A. Cola-S. F. Martin, G. W. Phillips, T. A. Puckette, and J. A. Cola-S. F. Martin, G. W. Phillips, T. A. Puckette, and J. Puc S. F. Haltin, O. W. Finings, 1 A. Fuckette, and S. H. Colarpret, J. Am. Chem. Soc., 102, 5866 (1980); (d) S. F. Martin and G. W. Phillips, J. Org. Chem., 43, 3792 (1978).
 (111) (a) N. L. Broekhof, F. L. Jonkers, and A. van der Gen, Tetrahedron Lett., 2433 (1979); (b) N. L. Broekhof, F. L. Jonk-
- ers, and A. van der Gen, *Tetrahedron Lett.*, 2671 (1980). (112) A. Dehnel, J. P. Finet, and G. Lavielle, *Synthesis*, 474 (1977). (113) H. Tanaka, H. Hayakawa, and T. Miyasaka, *Tetrahedron*, 38,
- 2635 (1982)
- (114) R. R. Schmidt and R. Betz, Synthesis, 748 (1982).
 (115) D. Seebach, W. Wykypiel, W. Lubosch, and H. Kalinowski, M. Kalinowski, Anter Cl. 2100 (1978). Helv. Chim. Acta, 61, 3100 (1978).
- (116) M. Al-Aseer, P. Beak, D. Hay, D. J. Kempf, S. Mills, and S. G. Smith, J. Am. Chem. Soc., 105, 2080 (1983).
 (117) R. B. Bach, M. L. Braden, and G. J. Wolber, J. Org. Chm.,
- 48, 1509 (1983)
- (118) A. I. Meyers, W. F. Rieker, and L. M. Fuentes, J. Am. Chem. Soc., 105, 2082 (1983). (119) D. Seebach, J.-J. Lohmann, M. A. Syfrig, and M. Yoshifuju,
- Tetrahedron, 39, 1963 (1983).
- (120) A. R. Katritzky, N. E. Grzeskowiak, T. Siddiqui, C. Jayaram, and S. N. Vassilatos, J. Chem. Res., Synop., 26 (1982).
 (121) T. L. Macdonald and B. A. Narayanan, J. Chem. Res., Sy-

- (12) D. L. Comins, Tetrahedron Lett., 2807 (1983).
 (123) J. E. Saavedra, J. Org. Chem., 48, 2388 (1983).
 (124) A. I. Meyers, L. M. Fuentes, and Y. Kubota, Tetrahedron, in press
- (125) A. I. Meyers and L. M. Fuentes, private communication, 1983.
- (126) A. I. Meyers, P. D. Edwards, W. F. Rieker, and T. R. Bailey, J. Am. Chem. Soc., 106, 3270 (1984). (127) A. R. Katritzky, C. Jayaram, and S. N. Vassilatos, *Tetrahe*-
- dron, 39, 2023 (1983).